Article Text

Utility of established prognostic scores in COVID-19 hospital admissions: multicentre prospective evaluation of CURB-65, NEWS2 and qSOFA
  1. Patrick Bradley1,
  2. Freddy Frost2,3,
  3. Kukatharmini Tharmaratnam4 and
  4. Daniel G Wootton3
  5. NW Collaborative Organisation for Respiratory Research
    1. 1Department of Respiratory Medicine, Blackpool Teaching Hospitals NHS Foundation Trust, Blackpool, UK
    2. 2Department of Respiratory Medicine, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
    3. 3Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
    4. 4Department of Health Data Science, University of Liverpool, Liverpool, UK
    1. Correspondence to Dr Daniel G Wootton; dwootton{at}liverpool.ac.uk

    Abstract

    Introduction The COVID-19 pandemic is ongoing, yet, due to the lack of a COVID-19-specific tool, clinicians must use pre-existing illness severity scores for initial prognostication. However, the validity of such scores in COVID-19 is unknown.

    Methods The North West Collaborative Organisation for Respiratory Research performed a multicentre prospective evaluation of adult patients admitted to the hospital with confirmed COVID-19 during a 2-week period in April 2020. Clinical variables measured as part of usual care at presentation to the hospital were recorded, including the Confusion, Urea, Respiratory Rate, Blood Pressure and Age Above or Below 65 Years (CURB-65), National Early Warning Score 2 (NEWS2) and Quick Sequential (Sepsis-Related) Organ Failure Assessment (qSOFA) scores. The primary outcome of interest was 30-day mortality.

    Results Data were collected for 830 people with COVID-19 admitted across seven hospitals. By 30 days, a total of 300 (36.1%) had died and 142 (17.1%) had been in the intensive care unit. All scores underestimated mortality compared with pre-COVID-19 cohorts, and overall prognostic performance was generally poor. Among the ‘low-risk’ categories (CURB-65 score<2, NEWS2<5 and qSOFA score<2), 30-day mortality was 16.7%, 32.9% and 21.4%, respectively. NEWS2≥5 had a negative predictive value of 98% for early mortality. Multivariable logistic regression identified features of respiratory compromise rather than circulatory collapse as most relevant prognostic variables.

    Conclusion In the setting of COVID-19, existing prognostic scores underestimated risk. The design of new prognostic tools should focus on features of respiratory compromise rather than circulatory collapse. We provide a baseline set of variables which are relevant to COVID-19 outcomes and may be used as a basis for developing a bespoke COVID-19 prognostication tool.

    • viral infection
    • pneumonia
    • respiratory infection
    https://creativecommons.org/licenses/by/4.0/

    This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

    Statistics from Altmetric.com

    Request Permissions

    If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

    Supplementary materials

    • Supplementary Data

      This web only file has been produced by the BMJ Publishing Group from an electronic file supplied by the author(s) and has not been edited for content.

    Footnotes

    • PB and FF are joint first authors.

    • Twitter @Freddy_Frost1

    • PB and FF contributed equally.

    • Collaborators North West Collaborative Organisation for Respiratory Research collaborators: Mahin Ahmad; Joshua Aigbirior, Alex Bull, Ruth Cade, Kate Grant, Charlotte King, Ayesha Kumar, Farheen Kutubuddin, Konstantinos Liatsikos, Muhammed Haris Mir, Eman Nasr, Laurence Pearmain, Rachel Penfold, Sarika Raghunath, Victoria Randles, Ryan Robinson and Ran Wang.

    • Contributors Conception and design: FF, PB and DGW. Clinical data collection: FF, PB and North West Collaborative Organisation for Respiratory Research collaborators. Analysis and interpretation: KT, FF, PB and DGW. Manuscript preparation: FF, PB and DGW, with review by KT. Clinical governance and academic supervision: DGW.

    • Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

    • Competing interests None declared.

    • Patient consent for publication Not required.

    • Ethics approval Institutional approval for data collection and anonymised data collation was obtained from all sites and was a combination of Caldicott guardian and research/audit committee approvals.

    • Provenance and peer review Not commissioned; externally peer reviewed.

    • Data availability statement Data are available upon reasonable request made to the corresponding author.

    • Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.