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Abstract
Introduction  Biomarkers of metabolic syndrome 
expressed soon after World Trade Center (WTC) exposure 
predict development of WTC Lung Injury (WTC-LI). The 
metabolome remains an untapped resource with potential 
to comprehensively characterise many aspects of WTC-LI. 
This case–control study identified a clinically relevant, 
robust subset of metabolic contributors of WTC-LI through 
comprehensive high-dimensional metabolic profiling and 
integration of machine learning techniques.
Methods  Never-smoking, male, WTC-exposed 
firefighters with normal pre-9/11 lung function were 
segregated by post-9/11 lung function. Cases of WTC-LI 
(forced expiratory volume in 1s <lower limit of normal, 
n=15) and controls (n=15) were identified from previous 
cohorts. The metabolome of serum drawn within 6 
months of 9/11 was quantified. Machine learning was 
used for dimension reduction to identify metabolites 
associated with WTC-LI.
Results  580 metabolites qualified for random forests 
(RF) analysis to identify a refined metabolite profile that 
yielded maximal class separation. RF of the refined 
profile correctly classified subjects with a 93.3% 
estimated success rate. 5 clusters of metabolites 
emerged within the refined profile. Prominent 
subpathways include known mediators of lung disease 
such as sphingolipids (elevated in cases of WTC-LI), 
and branched-chain amino acids (reduced in cases of 
WTC-LI). Principal component analysis of the refined 
profile explained 68.3% of variance in five components, 
demonstrating class separation.
Conclusion  Analysis of the metabolome of WTC-exposed 
9/11 rescue workers has identified biologically plausible 
pathways associated with loss of lung function. Since 
metabolites are proximal markers of disease processes, 
metabolites could capture the complexity of past 
exposures and better inform treatment. These pathways 
warrant further mechanistic research.

Introduction
Fire Department of New York (FDNY) rescue 
workers exposed to World Trade Center 
particulate matter (WTC-PM) developed lung 
disease similar to other exposed cohorts.1–6 
Characteristics of airflow obstruction predom-
inated in symptomatic individuals that sought 
treatment.1 7 8 WTC-affected subjects continue 

to have their quality of life adversely impacted 
even 15 years after exposure.9 10 

Biomarkers of metabolic syndrome 
(MetSyn), vascular injury and inflamma-
tion predict developing World Trade Center 
Lung Injury (WTC-LI) (defined as forced 
expiratory volume in 1 s percent predicted of 
normal (FEV1, %Pred) less than the lower limit 
of normal (LLN)).1 7 8 11 MetSyn is defined 
by inter-related risk factors of metabolic 
origin associated with end-organ disease and 
affects approximately one-third of the adult 
US population.12 13 A diagnosis of MetSyn is 
determined by the presence of at least three 
of the following comorbidities: abdominal 
obesity, insulin resistance, hypertriglyceri-
daemia, low high-density lipoprotein (HDL) 
and hypertension.12 We adjusted to National 
Cholesterol Education Program Adult Treat-
ment Panel III (NCEP ATP III) definitions of 
MetSyn for our cohort and diagnosed MetSyn 
as having three of five following criteria: 
systolic blood pressure (SBP) ≥130 mm Hg or 
diastolic BP (DBP) ≥85 mm Hg; HDL <40 mg/

Key messages

►► Can machine learning algorithms determine metab-
olomic signatures of World Trade Center Lung Injury 
(WTC-LI)?

►► Machine learning techniques are an innovative, 
promising approach to capturing the systemic na-
ture of the pathogenesis of particulate matter asso-
ciated lung disease.

►► We identified key pathways, such as sphingolipids 
and branched chain amino acids, that contribute to 
lung function loss after WTC particulate and toxin 
exposure.

►► To learn how machine learning can be integral to 
identifying key mediators of lung function  loss in 
this novel metabolomics investigation of WTC first 
responders.

►► The metabolome may allow us to further identify bi-
ologically relevant therapeutic targets of particulate/
toxin-associated lung disease.
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dL; triglycerides≥150 mg/dL; insulin resistance as glucose 
≥100 mg/dL; and body mass index (BMI)>30 kg/m2.

Our findings in the WTC-exposed FDNY cohort fit into 
a larger set of studies demonstrating the association of 
MetSyn, lipids and obstructive airways disease (OAD) 
after pollutant exposure.14 Prior studies have identified 
an association between metabolic mediators and disease 
severity following toxin exposure.1 15 16 Specifically, metal 
fume exposure secondary to welding has been linked to 
an increase in plasma unsaturated fatty acid (FA) levels. 
Consisting of particulates and metals (such as nickel, 
copper and iron), the welders’ exposure is similar to the 
WTC exposure; however, there exist significant differ-
ences. The exposure at the WTC site was diverse. The 
destruction of the WTC complex pulverised 1.2 million 
tons of construction material.17 18 Extensive analysis of 
the particulates for size and composition showed that 
metals (vanadium, chromium, nickel, iron, silicon and 
mercury) supplemented common construction mate-
rials, such as powdered concrete, calcium carbonate 
and silicates.17 Additional toxins included fibrous glass, 
asbestos, components of jet fuel, fire retardants and 
dioxins.18 With exposure including high-intensity partic-
ulates spanning the ultrafine to coarse range and asso-
ciated volatile compounds, our WTC cohort allows for 
novel metabolic observations.

Metabolic profiling (metabolomics), a comprehensive 
analytical technique that measures all small organic mole-
cules detectable in biological fluids, provides a contem-
poraneous snapshot of the organism’s physiology.19 
The metabolome’s assessment of low-molecular-weight 
compounds may prove the closest link to disease pheno-
type.20 Furthermore, metabolomics provides a non-in-
vasive functional genetics approach to understanding 
molecular complexity.20

However, metabolomics uses a high-throughput plat-
form and therefore optimising the analysis of this large 
data set is a primary challenge in ‘omics research.21 A 
common approach, using significance value cut-offs 
in reducing the dimensionality of the data, subsumes 
the possibility of producing false discoveries, while 
discounting truly important compounds. For this reason, 
we turn to machine learning, which has the ability to 
analyse differential expression of individual metabolites, 
as well as consider how metabolites interact with each 
other to produce class separation. This may allow us to 
unmask metabolites that appear insignificant on their 
own, but reveal key phenotypic changes when analysed 
in tandem with other metabolites.

Machine learning methods include random forests 
(RF), neural networks, partial least squares and support 
vector machines. Our machine learning method of 
choice is RF because it is unbiased, performs well on 
datasets with sizes similar to ours, is non-parametric and 
rarely overfits a data set.22

RF uses a large ensemble of decision trees to classify 
subjects, produces an unbiased estimate of model clas-
sification accuracy and measures each metabolite’s 

importance to model classification accuracy. This 
measure, called mean decrease accuracy, allows the 
researcher to narrow his focus to only those metabolites 
most important to class differentiation. We hypothesised 
that implementation of machine learning techniques on 
the metabolome of WTC-exposed FDNY firefighters may 
elucidate pathways of interest in progression to WTC-LI, 
reveal clustering patterns reflective of mechanistic action 
and enable discovery of bioactive lipid metabolites 
related to loss of lung function.

Methods
Study design
Cases and controls were drawn from symptomatic subjects 
referred for subspecialty pulmonary examination (SPE) 
between 10/1/2001 and 3/10/2008, and underwent 
specialised pulmonary function testing as previously 
described.1 7 8 The parent cohort consisted of cases of 
WTC-LI (n=96) defined as FEV1, %Pred <LLN at SPE and 
controls (n=127) selected as previously described.1 7 8 
Subjects were chosen for untargeted metabolome assess-
ment by application of a further set of inclusion criteria, 
including stable case/control assignment as ensured by 
most recent spirometry measures from annual health 
physical, and no chronic sinusitis diagnosis. Based on 
these criteria, 15 cases of WTC-LI were available from 
the previously studied group, and a 1:1 ratio of cases of 
WTC-LI to randomly selected controls was determined 
(figure 1).7 8 Specifically, cases of WTC-LI were defined as 
having FEV1, %Pred <LLN as defined by National Health and 
Nutrition Examination Survey III and control subjects as 
FEV1, %Pred ≥LLN, as previously described.1 23

Demographics
Demographic and clinical data were obtained from the 
WTC medical monitoring and treatment programme 
(MMTP). Exposure intensity is categorised as per the 
FDNY-WTC Exposure Intensity Index and is based on first 
arrival time at the WTC site, as previously described.5 24 25 
Specifically, subjects are considered to have high expo-
sure if they arrived during the morning of 11 September 
2001, intermediate exposure if they arrived in the after-
noon of 11 September 2001 and low exposure if they 
arrived on 12 September 2001. Duration is defined as 
the time in months spent at the WTC site performing 
rescue and recovery efforts. BMI was obtained at two time 
points: MMTP enrolment and SPE. 

Metabolomics
Serum collected within 200 days after 9/11/2001 
was processed and stored as previously 
described.1 7 8 11 26  Aliquots of serum were maintained at 
−80°C  until processing and metabolomic quantification 
(see online supplemental methods). The bioinformatics 
system consisted of four major components: the Labora-
tory Information Management System, data extraction 
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software, peak identification software and data processing 
tools for quality control, and compound identification. 
Quality control and curation were designed to ensure 
accurate and consistent identification of true chemical 
entities, and to remove those representing system arte-
facts, misassignments and background noise. Compounds 
were matched to library entries of retention index, mass 
and spectral data.27–30 Qualified metabolites were those 
detected in 80% or more of subjects per group with a 
relative SD of 15% or greater.31 In qualified metabolites, 
missing data were imputed using the minimum observed 
value of each compound.

Database management and statistics
SPSS V.23 (IBM) was used for data storage and handling. 
Continuous variables were expressed as median and 
IQR. Non-parametric Mann-Whitney U test was used to 

compare continuous data. For categorical data, count 
and proportions were used to summarise and Pearson χ2 
was used for comparison.

Machine learning, dimension reduction and pattern 
recognition
Curated data of the qualified profile were subjected to RF 
(randomForest Package R V.3.4.3, R-Project). A refined 
metabolite profile was developed by including the top 5% 
of metabolites important to class separation as measured 
by mean decrease accuracy, a measure of the decrease 
in classification accuracy of the model should the given 
metabolite be removed. RF was rerun with the refined 
profile to evaluate the classification accuracy produced 
by the refined profile.22 Ten replicates of each RF model 
were run to assure stability of the model. The best RF 
model was identified by the lowest estimated out-of-bag 
error rate of classification, a permutation-based assess-
ment of internal model validity. RF models consisted of 
10^6 and 10^3 trees for the qualified and refined profiles, 
respectively, with ‍n=

√
number of metabolites in profile‍ 

sampled with replacement at each node.
Principal component analysis (PCA) (SPSS V.23, IBM) 

was implemented to view the case/control separation 
in qualified metabolites compared with the machine 
learning-generated refined profile. PCA is a tool used in 
exploratory data analysis, allows for dimension reduction 
while preserving the variance of the data and can be used 
in the construction of predictive models. To perform 
PCA, each attribute was mean-centred, normalised and 
projected onto the eigenbasis of the correlation matrix of 
all attributes. The number of components retained was 
determined based on analysis of the scree plot. A deter-
mination of the variance explained by PCA was quan-
tified as the summation of the per cent total variance 
explained by the components identified by scree plot. 
Loading weights of metabolites on the principal compo-
nents were plotted to identify potential relationships 
between correlated metabolites. We first used the quali-
fied profile of 580 metabolites in the 30 subjects labelled 
by case/control status, then applied this method to the 
refined metabolite profile identified by RF.

Additionally, unsupervised two-way hierarchical clus-
tering was performed on the refined profile’s correlation 
matrix using Pearson correlation as a distance metric and 
average linkage (Cluster V.3.0, Java Treeview, Eisen Lab).

Results
Demographics
Parent cohort
Cases of WTC-LI (n=96) were similar to controls (n=127) 
in the parent cohort in age on 9/11, clinically avail-
able lipids (triglycerides, HDL, low-density lipoprotein 
(LDL)), SBP and DBP. FEV1, %Pred, forced vital capacity 
per cent predicted of normal (FVC%Pred), FEV1/FVC and 
duration of time (months) spent at WTC site were 
significantly decreased in WTC-LI cases compared with 

Figure 1  Study design. Metabolome assessment cases 
of World Trade Center Lung Injury (WTC-LI) and controls 
were selected. FEV, forced expiratory volume; LLN, 
lower limit of normal; MMTP, monitoring and treatment 
programme; NHANES PFT, National Health and Nutrition 
Examination Survey Pulmonary Function Test.
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controls, while BMI (at MMTP and SPE), exposure inten-
sity, and heart rate (HR) were significantly increased 
in WTC-LI cases compared with controls in the parent 
cohort (table 1).

Metabolomics subcohort
Cases of WTC-LI (n=15) were similar to controls (n=15) 
in age on 9/11, exposure intensity, duration, lipids 
(triglycerides, HDL, LDL), leucocyte subtype percentages 
(neutrophil, lymphocyte, monocyte, basophil and eosin-
ophil), serum levels of glucose, sodium, chloride, potas-
sium, uric acid, total protein and DBP. Cases of WTC-LI 
(n=15) had significantly decreased FEV1, %Pred, FVC%Pred 
and FEV1/FVC at SPE compared with controls (n=15) 
and also significantly increased BMI at both MMTP and 
SPE. Lastly, cases of WTC-LI had significantly increased 
SBP and HR (table 1).

Overall, cases of WTC-LI with metabolome (n=15) 
assessed were similar to the controls in the parent cohort 
(n=127) in spirometry, BMI, age on 9/11, exposure inten-
sity, lipids (triglycerides, HDL, LDL), blood pressure, 
leucocyte subtype percentages, serum levels of glucose, 
sodium, chloride, potassium, uric acid and total protein 
(table 1).

Controls with metabolome assessed (n=15) and 
controls in the parent cohort (n=127) also were similar in 
clinically available lipids, leucocyte subtype percentages, 
serum levels of glucose, sodium, chloride, potassium, uric 
acid and total protein. Controls (n=15) differed from 
their parent cohort (n=127) in BMI at MMTP and SPE, 
HR, SBP and DBP; however, controls consistently have 
significantly lower BMI at MMTP and SPE compared with 
cases of WTC-LI, and the same trend remains true for 
HR, SBP and DBP. The cases of WTC-LI with metabolome 

Table 1  Clinical measures, biomarker prevalence and model definition

Measure 

Parent cohort Metabolomics subcohort

Controls
n=127

WTC-LI
n=96

Controls
n=15

WTC-LI
n=15

PFT at SPE 

 � FEV1, % Pred*† 93 (85–99) 72 (66–75) 92 (90–98) 73 (70–75)

 � FVC% Pred*† 96 (89–103) 79 (72–85) 97 (95–100) 78 (75–88)

 � FEV1/FVC*† 76 (73–80) 72 (65–77) 75 (71–82) 71 (64–76)

BMI (kg/m2) 

 � MMTP entry*†‡ 28 (26–30) 29 (27–31) 26 (25–27) 29 (26–31)

 � SPE*†‡ 29 (27–31) 30 (28–34) 26 (24–28) 30 (28–31)

 � Age on 9/11 (years) 41 (37–45) 40 (36–45) 42 (38–46) 39 (37–46)

Exposure N (%) 

 � Low* 13 (10%) 21 (22%) 1 (7%) 4 (27%)

 � Intermediate* 85 (67%) 46 (48%) 11 (73%) 8 (53%)

 � High* 29 (23%) 29 (30%) 3 (20%) 3 (20%)

 � Duration (months)* 3 (1–5) 1 (1–4) 2 (1–5) 3 (1–5)

Lipids (mg/dL) 

 � Triglycerides 164 (98–238) 157 (107–243) 126 (99–237) 133 (110–201)

 � HDL§ 47 (40–55) 43 (38–54) 48 (45–57) 42 (3 5–57)

 � LDL¶ 131 (104–157) 131 (108–153) 134 (100–144) 147 (115–162)

 � Heart rate*†‡§ (beats/min) 72 (66–76) 74 (69–80) 66 (64–70) 75 (68–79)

BP (mm Hg) 

 � Systolic†‡§ 114 (108–124) 120 (110–128) 110 (100–112) 119 (108–129)

 � Diastolic‡§ 70 (70–80) 75 (70–81) 70 (60– 72) 71 (66–80)

Values in median (IQR) or N (%) as indicated. Significant by Mann-Whitney U or χ2 between:
*127 vs 96.
†15 vs 15.
‡ Controls 127 vs 15.
§Data available for 14 subcohort WTC-LI cases.
¶Data available for 13 subcohort WTC-LI cases; all comparisons between cases 96 vs 15 were insignificant.
BMI, body mass index; BP, blood pressure; FEV 1,%, pred forced expiratory volume in 1 s per cent predicted of normal; FVC %, pred forced 
vital capacity per cent predicted of normal; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MMTP, medical monitoring and 
treatment programme; PFT, Pulmonary Function Test; SPE, subspecialty pulmonary examination; WTC-LI, World Trade Center Lung Injury. 
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assessed and cases in the parent cohort were similar in all 
of the described clinical characteristics and biochemical 
measurements (table 1).

Metabolomics
Of 765 metabolites detected, 580 qualified, were 
included in further analysis and are summarised, (online 
supplementary table S1). Initial PCA of  the qualified 
profile revealed heterogeneity and overlap in metabolite 
expression levels between cases of WTC-LI and controls 
(figure 2A) and ill-defined metabolite clustering (online 
supplementary figure S1). Qualified metabolites were 
subjected to RF to reduce the dimensionality of the data 
by discovering those metabolites most relevant to our 
outcome. Mean decrease accuracy was measured for every 
metabolite to assess variable importance, and the top 5% 
were included in the refined metabolite profile (figure 3 
and online supplementary table S2). RF of the refined 
metabolite profile achieved a 6.7% out-of-bag estimated 
error rate (93.3% estimated accuracy) (figure 3).

PCA of the refined metabolite profile captured 68.3% 
of variance in the five components retained based on 
examination of the scree plot (online supplementary 
figure S2) and demonstrated improved class separation 
compared with the initial PCA (figure 2B).

In PCA, we see that features of the metabolome years 
prediagnosis can separate cases of WTC-LI from controls. 
Thereafter, we can begin to examine how these features 
may mechanistically interact.

Characteristics of the refined profile
The PCA loading weights plot of the refined profile and 
correlation heatmap suggest metabolite associations 
through clustering patterns (figure  4A, B). Overall, we 
identified five clusters (C1–5) of metabolites based on the 

correlation heatmap (figure 4B). These clusters included 
metabolites from the following pathways: amino acids, 
carbohydrates, cofactors/vitamins, lipids, nucleotides, 
peptides and xenobiotics.

The lipid-predominant cluster (C1) consisted of 1-palmi-
toyl-2-arachidonoyl-GPC (16:0/20:4n6), 1-stearoyl-2-ar-
achidonoyl-GPC (18:0/20:4), arachidonate (20:4n6), 
uridine, 2-hydroxypalmitate, 2-hydroxystearate and 
lignoceroyl sphingomyelin (d18:1/24:0) (figure  4B). 
In PCA, these metabolites clustered closely (figure 4A). 
A member of C1, arachidonate (20:4n6), had the third 
highest mean decrease accuracy score and was therefore 
the third most important metabolite to class separation 
(figure 3).

Amino acid metabolites  and two ascorbate and aldarate 
metabolites were identified in C2: arabonate/xylonate, 
gulonate, n-acetylglutamine, methylsuccinate, n2-acetyl-
lysine, lanthionine and threonate. This group of metab-
olites included n2-acetyllysine, the metabolite with the 
highest mean decrease accuracy score (figure  3) and 
clustered tightly in the PCA scores plot (figure 4A).

Amino acids and lipids were key co-contributors in C3, 
which consisted of proline, dimethylglycine, propionyl-
carnitine, isobutyrylcarnitine, azelate (nonanedioate), 
vanillylmandelate (VMA), prolylglycine and 4-methylcat-
echol sulfate (figure 4B). Interestingly, several members 
of C2 bore strong correlations with members of C3 
(figure 4B).

In contrast to the prior clusters, sphingolipids were 
identified in C4, which consisted of sphingosine, sphin-
ganine and sphingosine 1-phosphate (figure  4B). 
This group of metabolites was tightly grouped in the 
PCA scores plot (figure  4A). Furthermore, this cluster 
contained the metabolite with the second highest mean 
decrease accuracy score, sphingosine (figure 3).

Figure 2  Demonstration of model optimisation: principal component analysis (PCA) scores plot. (A) PCA of the qualified 
profile reveals heterogeneity in the data. (B) PCA of the refined profile demonstrates improved class separation produced by 
the refined profile compared with initial PCA (A). WTC-LI, World Trade Center Lung Injury. 
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Finally, a phospholipid, docosahexaenoylcholine, and 
an alanine and aspartate metabolite, n-acetylasparagine, 
were found in C5 (figure  4B). Members of C5 were 
strongly correlated with metabolites of other clusters, 
namely C1 (figure 4B).

Discussion
The serum metabolome of the WTC-exposed firefighters 
soon after 11 September 2001 is metabolically rich and 
empowered by a well-described cohort that strengthens 
associations in the investigation of WTC-LI and systemic 
pathology; however, these associations are limited in inter-
pretation as our study’s samples are entirely collected 
within 200 days of WTC exposure. Although we can specu-
late on the metabolic environment prior to 11 September, 
inferences can only be made assuming that any individual 
component of MetSyn may not clinically change within 
such a short period of time. The state of health prior to 

exposure can only speculatively, but not definitively, be 
considered by review of the early blood draws post expo-
sure.

Prior literature closely links concurrent metabolic 
disease and lung function. In contrast, we have previously 
shown that these associations of MetSyn and future lung 
function loss occur in a cohort with normal lung function 
prior to exposure. Thus, we suggest that the metabolic envi-
ronment soon after exposure can trigger an inflammatory 
cascade that contributes to persistent and irreversible lung 
damage.

Although the metabolome reflects the complex interac-
tion between many different parent cells, our data suggest 
that the most biologically active WTC-LI-associated metab-
olites reflect lipids and amino acids. Several of these have 
been identified as associated with broader categories of 
OAD, and, in line with our hypothesis, these metabolites 
clustered in patterns representative  of their established 

Figure 3  Random forests (RF) variable importance in projection. RF variable importance in projection is measured by 
mean decrease accuracy; the top 5% of metabolites important to class separation are shown. The confusion matrix shows 
classification accuracy of the refined profile. PUFA, polyunsaturated fatty acids. 
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mechanisms; however, other clusters contain novel metab-
olites. Overall, these metabolite clusters represent biologi-
cally plausible signalling cascades.

Our exclusively sphingolipid cluster, C4, highlighted the 
importance of these established inflammatory and meta-
bolic mediators. Sphingosine 1-phosphate is a pleiotropic 
inflammatory mediator involved in immune cell trafficking 
and asthmatic hyper-reactivity induction.32 Elevation 
of sphingosine, a product of sphingosine 1-phosphate 
degeneration, in cases of WTC-LI may indicate decreased 
bioavailability of sphingosine 1-phosphate, leading to 
compromised vascular integrity.32 We saw a decrease in 
sphingosine 1-phosphate levels in cases of WTC-LI. Of 
interest is our finding that cases of WTC-LI also had signifi-
cantly higher HR and SBP.

In contrast to the homogeneity of C4, the metabolites in 
C1 were far more diverse, including lipids from a variety 
of subpathways. The importance of lignoceroyl sphingo-
myelin (d18:1/24:0) proposes that ceramide, a building 
block of sphingosine and a metabolite of LDL and very-
low-density lipoprotein, may be involved in WTC-LI patho-
genesis. Sphingomyelins are involved in ceramide synthesis 
and metabolism. Ceramide is involved in the synthesis and 
degradation of ceramide 1-phosphate. Ceramide 1-phos-
phate triggers release of arachidonate (20:4n6), the third 
most important metabolite to class separation in this study 
and a key mediator in the inflammatory cyclooxygenase 
(COX) pathway.32 Arachidonate (20:4n6), being the 
primary substrate in eicosanoid production, is involved in 
immune cell recruitment.33 34 Additionally, eicosanoids are 
pivotal in inflammatory pathogenesis. Moreover, changes 
in ceramide 1-phosphate correlate directly with changes 
in sphingosine and sphingosine 1-phosphate, suggesting 
that ceramide 1-phosphate is a precursor of sphingosine 

1-phosphate.32 Together, these data elucidate intercon-
nected pathways involved in early response to WTC-expo-
sure that differentiate well cases of WTC-LI and controls 
based on the metabolome years pre diagnosis.

Chronic inflammation has been identified as a prob-
able mediator of loss of lung function after exposure to 
WTC-PM. We know that metabolic dysfunction is not only 
a predictor of WTC-LI but also causes chronic inflamma-
tion. Azelate, a saturated FA in C1, was important to class 
separation. Saturated FAs activate TLR-4 in a mechanistic 
link between systemic inflammation and obesity, a key 
component of metabolic dysfunction.32 This activation of 
TLR-4 induces ceramide biosynthetic genes required for 
TLR-4-dependent insulin resistance.32 Glucose, a marker 
of insulin resistance, is a predictor of WTC-LI in the entire 
WTC-exposed firefighter cohort.

Notably, several classes of FAs were revealed by this anal-
ysis. In C1, lignoceroyl sphingomyelin (d18:1/24:0) clus-
tered with polyunsaturated fatty acids (PUFA)s including 
arachidonate (20:4n6), and FAs, monohydroxy, as well 
as phospholipids. By examination of figure 5, it becomes 
apparent that phospholipid and sphingolipid metabolism 
may be linked by FA metabolism. While little is known 
about the specific FAs and phospholipids identified in this 
analysis, we do know the inflammatory roles of the PUFA 
arachidonate (20:4n6). The metabolites correlated with 
arachidonate (20:4n6) may also be related to immune cell 
recruitment. Evidence of this relationship is the central 
cell membrane role of phospholipids and sphingolipids, 
that sphingosine 1-phosphate is a potent pro-inflamma-
tory mediator and neutrophil chemotactant, and that 
elevated sphingolipids may be indicative of an increased, 
disproportionate response to perturbation. The informa-
tion presented here warrants mechanistic research into 

Figure 4  (A) Refined profile principal component analysis loading weights plot was used to derive insight into possible 
association of biomarkers. (B) Correlation heatmap. Correlation matrix of refined profile subjected to hierarchical clustering 
using Pearson correlation as a distance metric.
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this potential pathway as a therapeutic target to ameliorate 
derailed inflammatory responses.

As with previously discussed clusters, C2 contains some 
well-understood metabolites and some with unexplored 
roles. The most important metabolite to class separation 
is n2-acetyllysine, a lysine metabolite; lysine is an essential 
amino acid involved in the formation of protein and acetyl-
ation of lysine residues plays a key role in epigenetic modu-
lation of inflammatory responses, creating bromodomain 
docking sites.35 In murine macrophages, pharmacological 
inhibition of a bromodomain attenuated nuclear factor-κB-
directed production of nitric oxide and interleukin-6.35

Other essential amino acids presented in C2, namely 
several leucine, isoleucine and valine metabolites. These 
branched-chain amino acids (BCAAs) are hypothesised to 
be biologically active in respiratory illness due to their high 
anabolic capacity.36 Attenuated blood BCAA concentrations 
have been observed in patients with chronic obstructive 
pulmonary disease (COPD).37–39 Dietary supplementation 
with BCAAs ameliorates COPD-related respiratory muscle 
weakness and weight loss, and low serum BCAA concentra-
tion has been identified in COPD cohorts.37 40 41 This is the 
first data suggesting low serum BCAA concentration may 
predispose to PM-related lung disease in our WTC FDNY 
cohort.

One well-known metabolite found in C3, VMA,  is 
indicative of epinephrine and norepinephrine release 
(both known stress hormones). Epinephrine is responsible 
for increased release of FAs and is a potential explanation of 
raised levels of FAs, such as propionylcarnitine and azelate 

(nonanedioate) (C3), in cases of WTC-LI. The pleiotropic 
inflammatory transcription factor c-Jun N-terminal kinases 
(JNK) is activated by exposure to free FAs and is involved in 
the signalling cascade of the receptor for advanced glyca-
tion end products (RAGE).42 We are currently investigating 
the roles of RAGE and JNK in WTC-LI.23 43 44

As hypothesised, this analysis can identify biologically 
plausible signalling pathways relevant to the development of 
WTC-LI. While established mediators such as sphingolipids 
were reviewed, several potentially novel mediators, including 
FAs, lysine, BCAAs (in their predispositional nature), gluta-
mine and stress hormone metabolites, have been eluci-
dated. Some of our findings, especially the COX mediators, 
sphingolipids and BCAAs, mimic similar findings in COPD 
and pollutant-exposed cohorts. The similarities observed 
between the metabolome of this select group of WTC-ex-
posed firefighters and that of other cohorts with inflamma-
tory disease support generalisability to OAD cohorts, and 
support validity of findings in this select group of WTC-ex-
posed firefighters (additional discussion of metabolites iden-
tified in the clustering can be found in the supplement).

Our study has several limitations. The metabolome 
provides only a contemporaneous snapshot of small 
organic compounds present in serum. As such, our ability 
to single out only WTC-LI-pathogenesis-related metabo-
lites is limited; however, we attempted to mitigate the prev-
alence of spurious discoveries through implementation of 
machine learning algorithms. Given the limited sample 
size of the current study, confounders have been relatively 
well controlled by selection from a homogeneous subject 

Figure 5  Pathway visualisation. Metabolic pathways of sphingolipids and phospholipids reveal pathways involving key 
metabolites, and that sphingolipid metabolism is linked with phospholipid metabolism by long-chain fatty acid metabolism. 
Node size correlates to fold change (red—up, blue—down, cases of World Trade Center Lung Injury/control).
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pool adhering to numerous criteria. Assuringly, the groups 
significantly differ in few metabolic biomarkers, only SBP, 
HR and BMI; other metabolic biomarkers and biomarkers 
of MetSyn are not significantly different between groups. 
Effects due to baseline BMI differences were mitigated by 
case definition based on percent predicted values. Addi-
tional unknown effects due to differences in exposure and 
duration of exposure are also minimised by the absence of 
significant differences in these variables between cases of 
WTC-LI and controls in subjects with metabolome assessed. 
Because distant history of smoking can predispose to non-re-
solving inflammation, our primary distinction is between 
‘ever’ and ‘never’ smokers. Only never-smokers were 
included in this analysis; the metabolomic profile of ever-
smoking WTC-exposed subjects remains unknown. Addi-
tionally, further profiling, including genomic, of this cohort 
must be performed to understand WTC-LI susceptibility.

It is important to note that any machine learning model 
is specific to its training data. However, the bootstrap-ag-
gregating procedure followed by RF helps avoid overfitting 
that may typically be produced by a high variable-to-obser-
vation ratio. Simply put, the potential for false discovery is 
decreased by the high numbers of decision trees grown. 
Another aspect of this analysis is its strength in identifying 
intrinsic data patterns. While these patterns do not establish 
causal relationships, we assess model validity by out-of-bag 
classification procedures and support findings with perti-
nent literature. Due to the lack of an independent valida-
tion cohort, our findings have not been validated yet, but 
we acknowledge that this type of external validation would 
significantly strengthen the replicability and generalis-
ability of our findings and methods.

Findings from this study have identified several meta-
bolic pathways that may contribute to the pathogenesis 
of WTC-LI and similar lung injury-related conditions. 
The clusters differentiating WTC-exposed subjects with 
and without lung injury were primarily composed of lipid 
and protein metabolites, and therefore diet may be an 
important modifiable determinant of WTC-LI risk.

Dietary FAs may be able to alter the lipidomic signature 
that characterised the WTC-LI subjects. Specifically, a diet 
that is low in saturated fat intake and has a low omega-6-to-
omega-3 FA ratio may help to correct high ceramide and 
the imbalance in phospholipid-derived long-chain PUFA 
metabolites (eg, arachidonate, docosahexaenoylcholine), 
which could have downstream beneficial effects on inflam-
matory and insulin signalling pathways.45–47

Diet may also help address the altered amino acid profile 
seen in WTC-LI subjects. In patients with advanced lung 
disease (COPD), BCAA supplements have been found 
to increase BCAA concentrations and improve health 
outcomes;38 48 however, in COPD, inadequate intake of 
energy, protein and BCAAs likely contributes importantly 
to the low BCAA concentrations. Although there is no data 
yet available on the dietary intakes of WTC-LI subjects, 
based on their sociodemographic background and prev-
alence of adiposity-based chronic disease and cardiomet-
abolic risk factors, we assume that they tend to consume 

adequate energy and follow a typical Western diet, which, 
especially for males, tends to be high in protein.49

Importantly, it remains unclear to what extent, if any, 
diet contributes to the metabolomic signature of WTC-LI 
subjects, and what is the optimal diet for preventing, 
managing and treating WTC-LI and similar lung injuries. 
Additional research, including randomised clinical trials, is 
needed to examine the impact of diet and other modifiable 
lifestyle behaviours on WTC-LI progression.
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