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NEOCORTEX DURING SLEEP SPINDLES
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Introduction Surprisingly little is known about neural activity
in the sleeping cerebellum.5 17 Using long-term wireless
recordings, we have made routine recordings of local field
potentials (LFPs) and action potentials for the entirety of nat-
ural sleep in non-human primates.
Methods We were able to record simultaneously from the
primary motor cortex (M1), the thalamus and the cerebellum
using both rigid multi-contact linear electrode arrays and
flexible microwires.11 12 Recording for the entirety of the
natural sleep was achieved using a custom-made wearable
device.
Results We find that the M1 and cerebellum communicate
with each other during sleep,13 14 with cerebellum-to-M1 sig-
nals passing via the thalamus. We find that both M1 and cer-
ebellar neuronal firings are broadly synchronous and phase-
locked to the sleep cycle.7 Additionally, both spikes and LFPs
in M1 and cerebellum also show coherence at slow (<1Hz),
delta (1-4Hz) and alpha (7–15Hz) frequencies.8 15 16 We
also see phase-locking between the spikes of M1 and the
LFPs of the cerebellum (and vice versa) at these same fre-
quencies. Using Granger causality analysis on the LFPs we
were able to observe directed connectivity from motor cortex
to the cerebellum in deep sleep. This suggested a neocortical
origin of slow oscillations. By contrast, sleep spindles (in the
alpha frequency range) in light sleep revealed a causal influ-
ence from the cerebellum to motor cortex, going via the
thalamus.
Discussion Our results shed new light on the mechanisms of
sleep spindle generation9 and show that the cerebellum is an
active participant of sleep. We postulate that the cerebello-tha-
lamo-neocortical pathways is implicated in sleep-dependent
consolidation of procedural learning.1-4 6 18-20
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Introduction There is limited evidence to suggest that a ‘one-
size fits all’ mattress provides the appropriate support in indi-
viduals with diverse body shapes, a greater understanding of
how different mattresses affect the human body is required.
By having a more objective approach to choosing a mattress,
individuals may improve quality of sleep.
Materials A ten-camera infrared movement analysis system
recorded Upper-Mid Thoracic, Mid-Lower Thoracic, Lower
Thoracic–Upper Lumbar, Upper-Lower Lumbar and Lower
Lumbar–Pelvic areas of the spine in side lying. Deviations
away from a neutral position were assessed under different
conditions. Three aesthetically identical mattresses were
tested, internally each mattress contained a different firm-
ness of spring unit (soft, medium, firm). In addition,
height, weight, shoulder width and hip circumference
measurements were taken to determine differences in body
types.
Results Spinal alignment was assessed on sixty healthy partici-
pants and no significant differences were seen between the
different mattress configurations. However further analysis
showed significant differences in spinal alignment between the
different mattress conditions within different body shape sub-
groups. Subgroups were defined using body weight, height,
BMI, shoulder width and hip circumference. Those with a
higher body weight had a more neutral spinal alignment when
on a firmer mattress, whereas those with a lower body weight
were better suited to a softer mattress. Shorter people were
better aligned on a softer mattress, and a medium mattress
kept the spine in a more neutral position amongst taller
individuals.
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Discussion This study suggests that a ‘one-size fits all’
approach to mattresses may not be appropriate and contrast-
ing body types need different levels of support to improve
overall spinal alignment. The use of simple anthropometric
measurements could make the selection of the most appropri-
ate mattress easier for the public.
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Introduction Solriamfetol (formerly JZP-110), a dopamine
and norepinephrine reuptake inhibitor, has been approved
in the United States to improve wakefulness in adults with
excessive daytime sleepiness (EDS) associated with narco-
lepsy (75–150 mg) or obstructive sleep apnoea (OSA; 37.5–
150 mg). A Marketing Authorisation Application for these
indications is under review with the European Medicines
Agency. This phase 3 study assessed safety and efficacy of
solriamfetol in participants with narcolepsy types 1 and 2
(NT1/2).1

Methods In this 12-week, double-blind, randomised, placebo-
controlled study, participants with or without cataplexy
were randomised to solriamfetol 75 mg, 150 mg, 300 mg,
or placebo. Eligibility criteria: NT1/2 diagnosis; mean sleep
latency <25 minutes on Maintenance of Wakefulness Test
(MWT); Epworth Sleepiness Scale (ESS) score �10. Exclu-
sion criteria: medications that could affect EDS or cata-
plexy; night-time or variable shift work; other conditions
causing EDS.
Results 236 participants received �1 dose of solriamfetol
(67.2% female; 80.2% white). Baseline MWT mean sleep
latency: 7.5 minutes; baseline ESS score: 17.2. Solriamfetol
significantly increased MWT sleep latency at week 12
(P<0.0001 for 300 mg and 150 mg); least squares (LS)
mean change: 12.3 minutes for 300 mg, 9.8 for 150 mg,
4.7 for 75 mg, and 2.1 for placebo. Solriamfetol signifi-
cantly decreased ESS scores at week 12 (P<0.0001 150 mg
and 300 mg; P<0.05 75 mg). LS mean change in ESS: -6.4
for 300 mg, -5.4 for 150 mg, -3.8 for 75 mg, and -1.6 for
placebo. Most common treatment-emergent adverse events
(TEAEs; �5%): headache, nausea, decreased appetite, naso-
pharyngitis, dry mouth, and anxiety. Discontinuations due
to TEAEs were more frequent in solriamfetol 150 mg and
300 mg groups.
Discussion Solriamfetol improved wakefulness and reduced
EDS in participants with NT1/2. Most AEs were mild to
moderate.
Support Jazz Pharmaceuticals.
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Introduction Obstructive sleep apnoea (OSA) is often associ-
ated with persistent excessive daytime sleepiness (EDS) despite
sleep apnoea therapy. There are currently no approved treat-
ments in the European Union for the treatment of EDS in
this population. Solriamfetol (formerly JZP-110), a dopamine
and norepinephrine reuptake inhibitor, has been approved in
the United States to improve wakefulness in adults with EDS
associated with narcolepsy (75–150 mg) or OSA (37.5–150
mg). A Marketing Authorisation Application for these indica-
tions is under review with the European Medicines Agency.
This study evaluated the efficacy and safety of solriamfetol for
treatment of EDS in participants with OSA with current or
prior sleep apnoea treatment.1

Methods In this double-blind, placebo-controlled, parallel-
group phase 3 trial, participants with OSA and associated EDS
were randomly assigned to solriamfetol 37.5 mg, 75 mg, 150
mg, or 300 mg or placebo for 12 weeks.
Results Of 476 randomised participants, 459 were included
in the prespecified efficacy analyses. Co-primary endpoints
(Maintenance of Wakefulness Test sleep latency, Epworth
Sleepiness Scale score) were met at all solriamfetol doses
(P<0.05), with dose-dependent effects observed at week 1
and maintained over the study duration. All doses except
37.5 mg resulted in significantly higher percentages of partic-
ipants reporting improvement on Patient Global Impression
of Change (key secondary endpoint; P<0.05). Adverse events
(AEs) were reported in 47.9% of placebo- and 67.9% of sol-
riamfetol-treated participants; 5 participants experienced seri-
ous AEs (2 [1.7%] placebo, 3 [0.8%] solriamfetol); none
were deemed related to study drug. The most common AEs
with solriamfetol were headache (10.1%), nausea (7.9%),
decreased appetite (7.6%), anxiety (7.0%), and nasopharyngi-
tis (5.1%).
Discussion Solriamfetol significantly improved wakefulness and
reduced sleepiness in participants with OSA and EDS. Most
AEs were mild or moderate.
Support Jazz Pharmaceuticals.
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