Skip to main content

Assessment of Bone Formation Capacity Using In vivo Transplantation Assays: Procedure and Tissue Analysis

  • Protocol
Book cover Osteoporosis

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 455))

Abstract

In vivo assessment of bone formation (osteogenesis) potential by isolated cells is an important method for analysis of cells and factors control ling bone formation. Currently, cell implantation mixed with hydroxyapa-tite/tricalcium phosphate in an open system (subcutaneous implantation) in immunodeficient mice is the standard method for in vivo assessment of bone formation capacity of a particular cell type. The method is easy to perform and provides reproducible results. Assessment of the donor origin of tissue formation is possible, especially in the case of human-to-mouse transplanta tion, by employing human specific antibodies or in situ hybridization using human specific Alu-repeat probes. Recently, several methods have been developed to quantitate the newly formed bone using histomorphometric methods or using non-invasive imaging methods. This chapter describes the use of in vivo transplantation methods in testing bone formationpotential of human mesenchymal stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Abdallah, B. M., Haack-Sorensen, M., Burns, J. S., et al. (2005) Maintenance of differentia tion potential of human bone marrow mesenchymal stem cells immortalized by human telom-erase reverse transcriptase gene in despite of extensive proliferation. Biochem Biophys Res Commun 326, 527–538.

    Article  CAS  PubMed  Google Scholar 

  2. 2. Kuznetsov, S. A., Krebsbach, P. H., Satomura, K., et al. (1997) Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo.J Bone Miner Res 12, 1335–1347.

    Article  CAS  PubMed  Google Scholar 

  3. 3. Bab, I., Ashton, B. A., Gazit, D., et al. (1986) Kinetics and differentiation of marrow stromal cells in diffusion chambers in vivo. J Cell Sci 84, 139–151.

    CAS  PubMed  Google Scholar 

  4. 4. Krebsbach, P. H., Kuznetsov, S. A., Satomura, K., et al. (1997) Bone formation in vivo: com parison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts. Transplantation 63, 1059–1069.

    Article  CAS  PubMed  Google Scholar 

  5. 5. Kratchmarova, I., Blagoev, B., Haack-Sorensen, M., et al. (2005) Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308, 1472–1477.

    Article  CAS  PubMed  Google Scholar 

  6. 6. Shultz, L. D., Schweitzer, P. A., Christianson, S. W., et al. (1995) Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 154, 180–191.

    CAS  PubMed  Google Scholar 

  7. 7. Fisher, L. W., Robey, P. G., Tuross, N., et al. (1987) The Mr 24,000 phosphoprotein from developing bone is the NH2-terminal propeptide of the alpha 1 chain of type I collagen. J Biol Chem 262, 13457–13463.

    CAS  PubMed  Google Scholar 

  8. 8. Fisher, L. W., Hawkins, G. R., Tuross, N., et al. (1987) Purification and partial characteriza tion of small proteoglycans I and II, bone sialoproteins I and II, and osteonectin from the mineral compartment of developing human bone. J Biol Chem 262, 9702–9708.

    CAS  PubMed  Google Scholar 

  9. 9. Kassem, M., Mosekilde, L., Eriksen, E. F. (1993) 1,25-dihydroxyvitamin D3 potentiates fluo ride-stimulated collagen type I production in cultures of human bone marrow stromal osteob-last-like cells. J Bone Miner Res 8, 1453–1458.

    Article  CAS  PubMed  Google Scholar 

  10. 10. Simonsen, J. L., Rosada, C., Serakinci, N., et al. (2002) Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol 20, 592–596.

    Article  CAS  PubMed  Google Scholar 

  11. 11. Stenderup, K., Rosada, C., Justesen, J., et al. (2004) Aged human bone marrow stromal cells maintaining bone forming capacity in vivo evaluated using an improved method of visualiza tion. Biogerontology 5, 107–118.

    Article  CAS  PubMed  Google Scholar 

  12. 12. Bruder, S. P., Kurth, A. A., Shea, M., et al. (1998) Bone regeneration by implantation of puri fied, culture-expanded human mesenchymal stem cells. J Orthop Res 16, 155–162.

    Article  CAS  PubMed  Google Scholar 

  13. 13. Kuznetsov, S. A., Mankani, M. H., Robey, P. G. (2000) Effect of serum on human bone marrow stromal cells: ex vivo expansion and in vivo bone formation. Transplantation 70, 1780–1787.

    Article  CAS  PubMed  Google Scholar 

  14. 14. Mankani, M. H., Krebsbach, P. H., Satomura, K., et al. (2001) Pedicled bone flap formation using transplanted bone marrow stromal cells. Arch Surg 136, 263–270.

    Article  CAS  PubMed  Google Scholar 

  15. 15. Hatano, H., Tokunaga, K., Ogose, A., et al. (1998) Origin of bone-forming cells in human osteosarcomas transplanted into nude mice—which cells produce bone, human or mouse? J Pathol 185, 204–211.

    Article  CAS  PubMed  Google Scholar 

  16. 16. Dennis, J. E., Konstantakos, E. K., Arm, D., et al. (1998) In vivo osteogenesis assay: a rapid method for quantitative analysis. Biomaterials 19, 1323–1328.

    Article  CAS  PubMed  Google Scholar 

  17. 17. Kaigler, D., Wang, Z., Horger, K., et al. (2006) VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J Bone Miner Res21, 735–744.

    Article  CAS  PubMed  Google Scholar 

  18. 18. Gundersen, H. J., Bendtsen, T. F., Korbo, L., et al. (1988) Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. APMIS 96, 379–394.

    Article  CAS  PubMed  Google Scholar 

  19. 19. Kerndrup, G., Pallesen, G., Melsen, F., et al. (1980) Histomorphometrical determination of bone marrow cellularity in iliac crest biopsies. Scand J Haematol 24, 110–114.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Abdallah, B.M., Ditzel, N., Kassem, M. (2008). Assessment of Bone Formation Capacity Using In vivo Transplantation Assays: Procedure and Tissue Analysis. In: Westendorf, J.J. (eds) Osteoporosis. Methods In Molecular Biology™, vol 455. Humana Press. https://doi.org/10.1007/978-1-59745-104-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-104-8_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-828-7

  • Online ISBN: 978-1-59745-104-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics