Skip to main content
Log in

Quantitative Assessment of Emphysema, Air Trapping, and Airway Thickening on Computed Tomography

  • Published:
Lung Aims and scope Submit manuscript

An Erratum to this article was published on 29 May 2008

Abstract

The severity of chronic obstructive pulmonary disease (COPD) is evaluated not only by airflow limitation but also by factors such as exercise capacity and body mass index. Recent advances in CT technology suggest that it might be a useful tool for evaluating the severity of the disease components of COPD. The aim of this study is to evaluate the correlation between the parameters measured on volumetric CT, including the extent of emphysema, air trapping, and airway thickening, and clinical parameters. CT scans were performed in 34 patients with COPD at full inspiration and expiration. We used in-house software to measure CT parameters, including volume fraction of emphysema (V950), mean lung density (MLD), CT air trapping index (CT ATI), segmental bronchial wall area (WA), lumen area (LA), and wall area percent (WA%). We found that the CT parameters were correlated with the pulmonary function test (PFT) results, body mass index (BMI), the modified Medical Research Council Dyspnea scale (MMRC scale), the six-minute-walk distance (6MWD), and the BODE index. V950 insp correlated to the BMI, FEV1, 6MWD, and the BODE index. The CT ATI correlated with the physiologic ATI (VC – FVC) (R = 0.345, = 0.045) and the MMRC scale (R = 0.532, = 0.001). There was a positive correlation between the WA% and the BMI (R = 0.563, < 0.001). MLDexp showed the strongest correlation with the BODE index (R = −0.756, < 0.001). We conclude that the severity of emphysema and air trapping measured on CT correlated with the PFT parameters 6MWD and BMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. American Thoracic Society (1995) Standards for the diagnosis and care of patients with chronic obstructive lung disease. Am J Respir Crit Care Med 52:S77–S83

    Google Scholar 

  2. Bergin C, Müller NL, Nichols DM, Lillington G, Hogg JC, Mullen B, Grymaloski MR, Osborne S, Paré PD (1986) The diagnosis of emphysema: a computed tomographic–pathologic correlation. Am Rev Respir Dis 133:541–546

    CAS  PubMed  Google Scholar 

  3. Müller NL, Staples CA, Miller RR, Abboud RT (1988) “Density mask”: an objective method to quantitate emphysema using computed tomography. Chest 94:782–787

    Article  PubMed  Google Scholar 

  4. Gevenois PA, de Maertelaer V, De Vuyst P, Zanen J, Yernault JC (1995) Comparison of computed density and macroscopic morphometry in pulmonary emphysema. Am J Respir Crit Care Med 152:653–657

    Article  CAS  PubMed  Google Scholar 

  5. Gevenois PA, De Vuyst P, de Maertelaer V, Zanen J, Jacobovitz D, Cosio MG, Yernault JC (1996) Comparison of computed density and microscopic morphometry in pulmonary emphysema. Am J Respir Crit Care Med 154:187–192

    Article  CAS  PubMed  Google Scholar 

  6. Gevenois PA, De Vuyst P, Sy P, Scillia M, Chaminade L, De Maertelaer V, Zanen J, Yernault JC (1996) Pulmonary emphysema: quantitative CT during expiration. Radiology 199:825–829

    Article  CAS  PubMed  Google Scholar 

  7. Kinsella M, Müller NL, Abboud RT, Morrison NJ, Dy-Buncio A (1990) Quantitation of emphysema by computed tomography using a “density mask” program and correlation with pulmonary function tests. Chest 97:315–321

    Article  CAS  PubMed  Google Scholar 

  8. Nishimura K, Murata K, Yamagishi M, Itoh H, Ikeda A, Tsukino M, Koyama H, Sakai N, Mishima M, Izumi T (1998) Comparison of different computed tomography scanning methods for quantifying emphysema. J Thorac Imaging 13:193–198

    Article  CAS  PubMed  Google Scholar 

  9. Nakano Y, Sakai H, Muro S, Hirai H, Oku Y, Nishimura K, Mishima M (1999) Comparison of low attenuation areas on CT between inner and outer segments of the lung in COPD patients: incidence and contribution to lung function. Thorax 54:384–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nakano Y, Muro S, Sakai H, Hirai T, Chin K, Tsukino M, Nishimura K, Itoh H, Pare PD, Hogg JC, Mishima M (2000) Computed tomographic measurements of airway dimensions and emphysema in smokers: correlation with lung function. Am J Respir Crit Care Med 162:1102–1108

    Article  CAS  PubMed  Google Scholar 

  11. Mishima M, Itoh H, Sakai H, Nakano Y, Muro S, Hirai T, Takubo Y, Chin K, Ohi M, Nishimura K, Yamaguchi K, Nakamura T (1999) Optimized scanning conditions of HRCT in the follow-up of pulmonary emphysema. J Comput Assist Tomogr 23:380–384

    Article  CAS  PubMed  Google Scholar 

  12. Klein JS, Gamsu G, Webb WR, Golden JA, Muller NL (1992) High-resolution CT diagnosis of emphysema in symptomatic patients with normal chest radiographs and isolated low diffusing capacity. Radiology 182:817–821

    Article  CAS  PubMed  Google Scholar 

  13. Heremans A, Verschakelen JA, Van Fraeyenhoven L, Demedts M (1992) Measurement of lung density by means of quantitative CT scanning: a study of correlations with pulmonary function tests. Chest 102:805–811

    Article  CAS  PubMed  Google Scholar 

  14. Gould GA, Redpath AT, Ryan M, Warren PM, Best JJ, Flenley DC, MacNee W (1991) Lung CT density correlates with measurements of airflow limitation and the diffusing capacity. Eur Respir J 4:141–146

    CAS  PubMed  Google Scholar 

  15. Camiciottoli G, Bartolucci M, Maluccio NM, Moroni C, Mascalchi M, Giuntini C, Pistolesi M (2006) Spirometrically gated high-resolution CT findings in COPD: lung attenuation vs lung function and dyspnea severity. Chest 129:558–564

    Article  PubMed  Google Scholar 

  16. Souza AS Jr, Müller NL, Marchiori E, Soares-Souza LV, de Souza Rocha M (2004) Pulmonary abnormalities in ankylosing spondylitis: inspiratory and expiratory high-resolution CT findings in 17 patients. J Thorac Imaging 19:259–263

    Article  PubMed  Google Scholar 

  17. Lohrmann C, Uhl M, Warnatz K, Ghanem N, Kotter E, Schaefer O, Langer M (2004) High-resolution CT imaging of the lung for patients with primary Sjogren’s syndrome. Eur J Radiol 52:137–143

    Article  PubMed  Google Scholar 

  18. Kim N, Seo JB, Song KS, Chae EJ, Kang SH Semi-automatic measurement of the airway dimension at computed tomography using the full-width-half-maximum method: study on the measurement accuracy according to CT parameters and size of the airway. Korean J Radiol (in press)

  19. Kim N, Seo JB, Song KS, Chae EJ, Kang SH Semi-automatic measurement of the airway dimension at computed tomography using the full-with-half-maximum method: study on the measurement accuracy according to orientation of an artificial airway. Korean J Radiol (in press)

  20. Amirav I, Kramer SS, Grunstein MM, Hoffman EA (1993) Assessment of methacholine-induced airway constriction by ultrafast high-resolution computed tomography. J Appl Physiol 75:2239–2250

    CAS  PubMed  Google Scholar 

  21. Block M, Liu YH, Harris D, Robb RA, Ritman EL (1984) Quantitative analysis of a vascular tree model with the dynamic spatial reconstructor. J Comput Assist Tomogr 8:390–400

    Article  CAS  PubMed  Google Scholar 

  22. D’Souza ND, Reinhardt JM, Hoffman EA (1996) ASAP: interactive quantification of 2D airway geometry. SPIE Med Imaging 2709:180–196

    Google Scholar 

  23. Wood SA, Zerhouni EA, Hoford JD, Hoffman EA, Mitzner W (1995) Measurement of three-dimensional lung tree structures by using computed tomography. J Appl Physiol 79:1687–1697

    CAS  PubMed  Google Scholar 

  24. American Thoracic Society (1995) Standardization of Spirometry, 1994 Update. Am J Respir Crit Care Med 152:1107–1136

    Article  Google Scholar 

  25. Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC (1993) Lung volumes and forced ventilatory flows. Report of the Working Party on the Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J Suppl 16:5–40

    Article  CAS  PubMed  Google Scholar 

  26. American Thoracic Society (1995) Single-breath carbon monoxide diffusing capacity (transfer factor). Recommendations for a standard technique: 1995 update. Am J Respir Crit Care Med 152:2185–2198

    Article  Google Scholar 

  27. Fujimoto K, Matsuzawa Y, Yamaguchi S, Koizumi T, Kubo K (2002) Benefits of oxygen on exercise performance and pulmonary hemodynamics in patients with COPD with mild hypoxemia. Chest 122:457–463

    Article  PubMed  Google Scholar 

  28. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories (2002) ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 166:111–117

    Article  Google Scholar 

  29. Mahler D, Wells C (1988) Evaluation of clinical methods for rating dyspnea. Chest 93:580–586

    Article  CAS  PubMed  Google Scholar 

  30. Schols AM, Slangen J, Volovics L, Wouters EF (1998) Weight loss is a reversible factor in the prognosis of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 157:1791–1797

    Article  CAS  PubMed  Google Scholar 

  31. Landbo C, Prescott E, Lange P, Vestbo J, Almdal TP (1999) Prognostic value of nutritional status in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 160:1856–1861

    Article  CAS  PubMed  Google Scholar 

  32. Celli BR, Cote CG, Marin JM, Casanova C, Montes de Oca M, Mendez RA, Pinto Plata V, Cabral HJ (2004) The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med 350:1005–1012

    Article  CAS  PubMed  Google Scholar 

  33. Fujimoto K, Kitaguchi Y, Kubo K, Honda T (2006) Clinical analysis of chronic obstructive pulmonary disease phenotypes classified using high-resolution computed tomography. Respirology 11:731–740

    Article  PubMed  Google Scholar 

  34. Wisser W, Klepetko W, Kontrus M, Bankier A, Senbaklavaci O, Kaider A, Wanke T, Tschemko E, Wolner E (1998) Morphologic grading of the emphysematous lung and its relation to improvement after lung volume reduction surgery. Ann Thorac Surg 65:793–799

    Article  CAS  PubMed  Google Scholar 

  35. Nakano Y, Coxson HO, Bosan S, Rogers RM, Sciurba FC, Keenan RJ, Walley KR, Pare PD, Hogg JC (2001) Core to rind distribution of severe emphysema predicts outcome of lung volume reduction surgery. Am J Respir Crit Care Med 164:2195–2199

    Article  CAS  PubMed  Google Scholar 

  36. Weder W, Thurnheer R, Stammberger U, Burge M, Russi EW, Bloch KE (1997) Radiologic emphysema morphology is associated with outcome after surgical lung volume reduction. Ann Thorac Surg 64:313–319

    Article  CAS  PubMed  Google Scholar 

  37. Gierada DS, Yusen RD, Villanueva IA, Pilgram TK, Slone RM, Lefrak SS, Cooper JD (2000) Patient selection for lung volume reduction surgery: an objective model based on prior clinical decisions and quantitative CT analysis. Chest 117:991–998

    Article  CAS  PubMed  Google Scholar 

  38. Aziz ZA, Wells AU, Desai SR, Ellis SM, Walker AE, MacDonald S, Hansell DM (2005). Functional impairment in emphysema: contribution of airway abnormalities and distribution of parenchymal disease. AJR Am J Roentgenol 185:1509–1515

    Article  PubMed  Google Scholar 

  39. Cosio MG, Snider GL (2001) Chest computed tomography: is it ready for major studies of chronic obstructive pulmonary disease? Eur Respir J 17:1062–1064

    Article  CAS  PubMed  Google Scholar 

  40. Orlandi I, Moroni C, Camiciottoli G, Bartolucci M, Belli G, Villari N, Mascalchi M (2004) Spirometric-gated computed tomography quantitative evaluation of lung emphysema in chronic obstructive pulmonary disease: a comparison of 3 techniques. J Comput Assist Tomogr 28:437–442

    Article  PubMed  Google Scholar 

  41. Martinez FJ, Foster G, Curtis JL, Criner G, Weinmann G, Fishman A, DeCamp MM, Benditt J, Sciurba F, Make B, Mohsenifar Z, Diaz P, Hoffman E, Wise R, NETT Research Group (2006) Predictors of mortality in patients with emphysema and severe airflow obstruction. Am J Respir Crit Care Med 173:1326–1334

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hironi M, Yasuyuki N, Katsura N, Yoko I, Masaru H, Tomoko B, Yuya O, Nobuyuki H, Masaharu N, the Hokkaido COPD Cohort Study Group (2007) Characterisation of phenotypes based on severity of emphysema in chronic obstructive pulmonary disease. Thorax 62:932-937

    Article  Google Scholar 

  43. Boschetto P, Quintavalle S, Zeni E, Leprotti S, Potena A, Ballerin L, Papi A, Palladini G, Luisetti M, Annovazzi L, Iadarola P, De Rosa E, Fabbri LM, Mapp CE (2006) Association between markers of emphysema and more severe chronic obstructive pulmonary disease. Thorax 61:1037–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gelb AF, Hogg JC, Muller NL, Schein MJ, Kuei J, Tashkin DP, Epstein JD, Kollin J, Green RH, Zamel N, Elliott WM, Hadjiaghai L (1996) Contribution of emphysema and small airways in COPD. Chest 109:353–359

    Article  CAS  PubMed  Google Scholar 

  45. Gelb AF, Zamel N, Hogg JC, Muller NL, Schein MJ (1998) Pseudophysiologic emphysema resulting from severe small-airways disease. Am J Respir Crit Care Med 158:815–819

    Article  CAS  PubMed  Google Scholar 

  46. Nakano Y, Müller NL, King GG, Niimi A, Kalloger SE, Mishima M, Pare PD (2002) Quantitative assessment of airway remodeling using high-resolution CT. Chest 122:271S–275S

    Article  PubMed  Google Scholar 

  47. Orlandi I, Moroni C, Camiciottoli G, Bartolucci M, Pistolesi M, Villari N, Mascalchi M (2005) Chronic obstructive pulmonary disease: thin-section CT measurement of airway wall thickness and lung attenuation. Radiology 234:604–610

    Article  PubMed  Google Scholar 

  48. Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, Cherniack RM, Rogers RM, Sciurba FC, Coxson HO, Pare PD (2004) The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 350:2645–2653

    Article  CAS  PubMed  Google Scholar 

  49. Hasegawa M, Nasuhara Y, Onodera Y, Makita, Nagai K, Fuke A, Ito Y, Betsuyaku T, Nishimura M (2006) Airflow limitation and airway dimensions in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 173:1309–1315

    Article  PubMed  Google Scholar 

  50. Wouters EFM, Creutzberg EC, Schols AMWJ (2002) Systemic effects in COPD. Chest 121:127–130

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the members of the Korean Obstructive Lung Disease (KOLD) Cohort study group. This study was supported by a grant (A040153) of the Korean Health 21 R&D Project, Ministry of Health & Welfare, Republic of Korea.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Joon Beom Seo or Sang Do Lee.

Additional information

J. B. Seo and S. D. Lee contributed equally to this work.

An erratum to this article is available at http://dx.doi.org/10.1007/s00408-008-9097-3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Y.K., Oh, YM., Lee, JH. et al. Quantitative Assessment of Emphysema, Air Trapping, and Airway Thickening on Computed Tomography. Lung 186, 157–165 (2008). https://doi.org/10.1007/s00408-008-9071-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-008-9071-0

Keywords

Navigation