Skip to main content
Log in

High Pulsatility Flow Induces Adhesion Molecule and Cytokine mRNA Expression in Distal Pulmonary Artery Endothelial Cells

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Background: Arterial stiffening or reduced compliance of proximal pulmonary vessels has been shown to be an important predictor of outcomes in patients with pulmonary hypertension. Though current evidence indicates that arterial stiffening modulates flow pulsatility in downstream vessels and is likely related to microvascular damage in organs without extensive distributing arteries, the cellular mechanisms underlying this relationship in the pulmonary circulation are unexplored. Thus, this study was designed to examine the responses of the microvascular pulmonary endothelium to changes in flow pulsatility. Methods: A flow system was developed to reproduce arterial-like pulse flow waves with the capability of modulating flow pulsatility through regulation of upstream compliance. Pulmonary microvascular endothelial cells (PMVECs) were exposed to steady flow and pulse flow waves of varied pulsatility with varied hemodynamic energy (low: pulsatility index or PI = 1.0; medium: PI = 1.7; high: PI = 2.6) at flow frequency of 1 or 2 Hz for different durations (1 and 6 h). The mean flow rates in all the conditions were kept the same with shear stress at 14 dynes/cm2. Gene expression was evaluated by analyzing mRNA levels of adhesion molecules (ICAM-1, E-selectin), chemokine (MCP-1) and growth factor/receptor (VEGF, Flt-1) in PMVECs. Functional changes were observed with monocyte adhesion assay. Results: 1) Compared to either steady flow or low pulsatility flow, increased flow pulsatility for 1 h induced significant increases in mRNA levels of ICAM-1, E-selectin and MCP-1. 2) Sustained high pulsatility flow perfusion induced increases in ICAM, E-selectin, MCP-1, VEGF and its receptor Flt-1 expression. 3) Flow pulsatility effects on PMVECs were frequency-dependent with greater responses at 2 Hz and likely associated with the hemodynamic energy level. 4) Pulse flow waves with high flow pulsatility at 2 Hz induced leukocyte adhesion and recruitment to PMVECs. Conclusion: Increased upstream pulmonary arterial stiffness increases flow pulsatility in distal arteries and induces inflammatory gene expression, leukocyte adhesion and cell proliferation in the downstream PMVECs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Asmar R, Safar M, Queneau P. Pulse pressure: an important tool in cardiovascular pharmacology and therapeutics. Drugs. 2003;63:927-32. doi:10.2165/00003495-200363100-00001

    Article  PubMed  Google Scholar 

  2. Balcells M, Fernandez Suarez M, Vazquez M, Edelman ER. Cells in fluidic environments are sensitive to flow frequency. J Cell Physiol. 2005;204:329-35. doi:10.1002/jcp.20281

    Article  PubMed  CAS  Google Scholar 

  3. Barakat AI, Lieu DK, Gojova A. Secrets of the code: do vascular endothelial cells use ion channels to decipher complex flow signals? Biomaterials. 2006;27:671-8. doi:10.1016/j.biomaterials.2005.07.036

    Article  PubMed  CAS  Google Scholar 

  4. Blackman BR, Garcia-Cardena G, Gimbrone MA, Jr. A new in vitro model to evaluate differential responses of endothelial cells to simulated arterial shear stress waveforms. J Biomech Eng. 2002;124:397-407. doi:10.1115/1.1486468

    Article  PubMed  Google Scholar 

  5. Cattan V, Kakou A, Louis H, Lacolley P. Pathophysiology, genetic, and therapy of arterial stiffness. Biomed Mater Eng. 2006;16:S155-61.

    PubMed  CAS  Google Scholar 

  6. Chesler NC, Thompson-Figueroa J, Millburne K. Measurements of mouse pulmonary artery biomechanics. J Biomech Eng. 2004;126:309-14. doi:10.1115/1.1695578

    Article  PubMed  Google Scholar 

  7. Cohn JN. Arterial stiffness, vascular disease, and risk of cardiovascular events. Circulation. 2006;113:601-3. doi:10.1161/CIRCULATIONAHA.105.600866

    Article  PubMed  Google Scholar 

  8. Dai G, Kaazempur-Mofrad MR, Natarajan S, Zhang Y, Vaughn S, Blackman BR, Kamm RD, Garcia-Cardena G, Gimbrone MA, Jr. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc Natl Acad Sci U S A. 2004;101:14871-6. doi:10.1073/pnas.0406073101

    Article  PubMed  CAS  Google Scholar 

  9. Davies PF, Barbee KA, Volin MV, Robotewskyj A, Chen J, Joseph L, Griem ML, Wernick MN, Jacobs E, Polacek DC, dePaola N, Barakat AI. Spatial relationships in early signaling events of flow-mediated endothelial mechanotransduction. Annu Rev Physiol. 1997;59:527-49. doi:10.1146/annurev.physiol.59.1.527

    Article  PubMed  CAS  Google Scholar 

  10. Davies PF, Spaan JA, Krams R. Shear stress biology of the endothelium. Ann Biomed Eng. 2005;33:1714-8. doi:10.1007/s10439-005-8774-0

    Article  PubMed  Google Scholar 

  11. Dekker RJ, van Soest S, Fontijn RD, Salamanca S, de Groot PG, VanBavel E, Pannekoek H, Horrevoets AJ. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood. 2002;100:1689-98. doi:10.1182/blood-2002-01-0046

    Article  PubMed  CAS  Google Scholar 

  12. Fisher AB, Chien S, Barakat AI, Nerem RM. Endothelial cellular response to altered shear stress. Am J Physiol Lung Cell Mol Physiol. 2001;281:L529-33.

    PubMed  CAS  Google Scholar 

  13. Frid MG, Kale VA, Stenmark KR. Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation: in vitro analysis. Circ Res. 2002;90:1189-96. doi:10.1161/01.RES.0000021432.70309.28

    Article  PubMed  CAS  Google Scholar 

  14. Gimbrone MA, Jr., Topper JN, Nagel T, Anderson KR, Garcia-Cardena G. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann N .Y .Acad Sci. 2000;902:230-9; discussion 239-40.

    Article  PubMed  CAS  Google Scholar 

  15. Go Y-M, Park H, Maland MC, Darley-Usmar VM, Stoyanov B, Wetzker R, Jo H. Phosphatidylinositol 3-kinase mediates shear stress-dependent activation of JNK in endothelial cells. Am J Physiol Heart Circ Physiol. 1998;275:H1898-H1904.

    CAS  Google Scholar 

  16. Goldsmith D, MacGinley R, Smith A, Covic A. How important and how treatable is vascular stiffness as a cardiovascular risk factor in renal failure? Nephrol Dial Transplant. 2002;17:965-969. doi:10.1093/ndt/17.6.965

    Article  PubMed  Google Scholar 

  17. Gorgulu S, Eren M, Yildirim A, Ozer O, Uslu N, Celik S, Dagdeviren B, Nurkalem Z, Bagirtan B, Tezel T. A new echocardiographic approach in assessing pulmonary vascular bed in patients with congenital heart disease: pulmonary artery stiffness. Anadolu Kardiyol Derg. 2003;3:92-7.

    PubMed  Google Scholar 

  18. Hastings NE, Simmers MB, McDonald OG, Wamhoff BR, Blackman BR. Atherosclerosis-prone hemodynamics differentially regulates endothelial and smooth muscle cell phenotypes and promotes pro-inflammatory priming. Am J Physiol Cell Physiol. 2007;293:C1824-33. doi:10.1152/ajpcell.00385.2007

    Article  PubMed  CAS  Google Scholar 

  19. Himburg HA, Dowd SE, Friedman MH. Frequency-dependent response of the vascular endothelium to pulsatile shear stress. Am J Physiol Heart Circ Physiol. 2006;293:H645-53. doi:10.1152/ajpheart.01087.2006

    Article  PubMed  CAS  Google Scholar 

  20. Himburg HA, Friedman MH. Correspondence of low mean shear and high harmonic content in the porcine iliac arteries. J Biomech Eng. 2007;128:852-6. doi:10.1115/1.2354211

    Article  PubMed  Google Scholar 

  21. Hunter KS, Gross JK, Lanning CJ, Kirby KS, Dyer KL, Ivy DD, Shandas R. Noninvasive methods for determining pulmonary vascular function in children with pulmonary arterial hypertension: application of a mechanical oscillator model. Congenit Heart Dis. 2008;3:106-16. doi:10.1111/j.1747-0803.2008.00172.x

    Article  PubMed  Google Scholar 

  22. Hunter K, Lee P, Lanning C, Ivy D, Kirby K, Claussen L, Chan K, Shandas R. Pulmonary vascular input impedance is a combined measure of pulmonary vascular resistance and stiffness and predicts clinical outcomes better than pulmonary vascular resistance alone in pediatric patients with pulmonary hypertension. Am Heart J. 2008;155:166-74. doi:10.1016/j.ahj.2007.08.014

    Article  PubMed  Google Scholar 

  23. Kingwell BA, Ahimastos AA. Arterial stiffness and coronary ischemic disease. Adv Cardiol. 2007;44:125-38. doi:10.1159/000096725

    Article  PubMed  CAS  Google Scholar 

  24. Mattace-Raso F, van der Cammen T, Hofman A, al. e. Arterial Stiffness and Risk of Coronary Heart Disease and Stroke: The Rotterdam Study. Circulation. 2006;113:657-663. doi:10.1161/CIRCULATIONAHA.105.555235

    Article  PubMed  Google Scholar 

  25. McEniery CM, Wilkinson IB, Avolio AP. Age, hypertension and arterial function. Clin Exp Pharmacol Physiol. 2007;34:665-71. doi:10.1111/j.1440-1681.2007.04657.x

    Article  PubMed  CAS  Google Scholar 

  26. McVeigh GE, Hamilton PK, Morgan DR. Evaluation of mechanical arterial properties: clinical, experimental and therapeutic aspects. Clin Sci (Lond). 2002;102:51-67. doi:10.1042/CS20010191

    Article  Google Scholar 

  27. Mitchell G, al. e. Cross-Sectional Relations of Peripheral Microvascular Function, Cardiovascular Disease Risk Factors, and Aortic Stiffness: The Framingham Heart Study. Circulation. 2005;112:3722 - 3728. doi:10.1161/CIRCULATIONAHA.105.551168

    Article  PubMed  Google Scholar 

  28. Mitchell GF, Conlin PR, Dunlap ME, Lacourciere Y, Arnold JM, Ogilvie RI, Neutel J, Izzo JL, Jr., Pfeffer MA. Aortic diameter, wall stiffness, and wave reflection in systolic hypertension. Hypertension. 2008;51:105-11. doi:10.1161/HYPERTENSIONAHA.107.099721

    Article  PubMed  CAS  Google Scholar 

  29. O’Rourke MF. Arterial pressure waveforms in hypertension. Minerva Med. 2003;94:229-50.

    PubMed  Google Scholar 

  30. O’Rourke MF. Brain microbleeds, amyloid plaques, intellectual deterioration, and arterial stiffness. Hypertension. 2008;51:e20; author reply e21. doi:10.1161/HYPERTENSIONAHA.107.109199

    Article  PubMed  CAS  Google Scholar 

  31. Painter PR, Eden P, Bengtsson HU. Pulsatile blood flow, shear force, energy dissipation and Murray’s Law. Theor Biol Med Model. 2006;3:31. doi:10.1186/1742-4682-3-31

    Article  PubMed  Google Scholar 

  32. Peng X, Haldar S, Deshpande S, Irani K, Kass DA. Wall stiffness suppresses Akt/eNOS and cytoprotection in pulse-perfused endothelium. Hypertension. 2000;41:378-81. doi:10.1161/01.HYP.0000049624.99844.3D

    Article  PubMed  CAS  Google Scholar 

  33. Peng X, Recchia FA, Byrne BJ, Wittstein IS, Ziegelstein RC, Kass DA. In vitro system to study realistic pulsatile flow and stretch signaling in cultured vascular cells. Am J Physiol Cell Physiol. 2003;279:C797-805.

    PubMed  CAS  Google Scholar 

  34. Safar ME. Peripheral pulse pressure, large arteries, and microvessels. Hypertension. 2004;44:121-2. doi:10.1161/01.HYP.0000135448.73199.75

    Article  PubMed  CAS  Google Scholar 

  35. Safar ME, Levy BI, Struijker-Boudier H. Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation. 2003;107:2864-9. doi:10.1161/01.CIR.0000069826.36125.B4

    Article  PubMed  Google Scholar 

  36. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3:1101-8. doi:10.1038/nprot.2008.73

    Article  PubMed  CAS  Google Scholar 

  37. Scott, D., K. Hunter, M. Li, R. Shandas, and W. Tan. Experimental and computational characterization of flow device for studying cell mechanobiology under pulsatile flow. BMES Proceedings, 2008.

  38. Undar A, Zapanta CM, Reibson JD, Souba M, Lukic B, Weiss WJ, Snyder AJ, Kunselman AR, Pierce WS, Rosenberg G, Myers JL. Precise quantification of pressure flow waveforms of a pulsatile ventricular assist device. Asaio J. 2005;51:56-9. doi:10.1097/01.MAT.0000150326.51377.A0

    Article  PubMed  Google Scholar 

  39. Weiss WJ, Lukic B, Undar A. Energy equivalent pressure and total hemodynamic energy associated with the pressure-flow waveforms of a pediatric pulsatile ventricular assist device. Asaio J. 2005;51:614-7. doi:10.1097/01.mat.0000179341.95404.f8

    Article  PubMed  Google Scholar 

  40. Yamamoto K, Sokabe T, Watabe T, Miyazono K, Yamashita JK, Obi S, Ohura N, Matsushita A, Kamiya A, Ando J. Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. Am J Physiol Heart Circ Physiol. 2005;288:H1915-H1924. doi:10.1152/ajpheart.00956.2004

    Article  PubMed  CAS  Google Scholar 

  41. Yee A, Bosworth KA, Conway DE, Eskin SG, McIntire LV. Gene expression of endothelial cells under pulsatile non-reversing vs. steady shear stress; comparison of nitric oxide production. Ann Biomed Eng. 2008;36:571-9. doi:10.1007/s10439-008-9452-9

    Article  PubMed  Google Scholar 

  42. Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25:932-43. doi:10.1161/01.ATV.0000160548.78317.29

    Article  PubMed  CAS  Google Scholar 

  43. Zoungas S, Asmar RP. Arterial stiffness and cardiovascular outcome. Clin Exp Pharmacol Physiol. 2007;34:647-51. doi:10.1111/j.1440-1681.2007.04654.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded in part by grants from the Children’s Hospital at Denver (Research Scholar Development Award and CCTSI-K12 Award to W.T.) and the NIH (HL 067397, HL 072738, K24 HL051506 to R.S., HL-14985-36 and HL084923-03 to K.R.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Scott, D.E., Shandas, R. et al. High Pulsatility Flow Induces Adhesion Molecule and Cytokine mRNA Expression in Distal Pulmonary Artery Endothelial Cells. Ann Biomed Eng 37, 1082–1092 (2009). https://doi.org/10.1007/s10439-009-9684-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9684-3

Keywords

Navigation