Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins

Abstract

Lymphatic vessels are essential for immune surveillance, tissue fluid homeostasis and fat absorption. Defects in lymphatic vessel formation or function cause lymphedema. Here we show that the vascular endothelial growth factor C (VEGF-C) is required for the initial steps in lymphatic development. In Vegfc−/− mice, endothelial cells commit to the lymphatic lineage but do not sprout to form lymph vessels. Sprouting was rescued by VEGF-C and VEGF-D but not by VEGF, indicating VEGF receptor 3 specificity. The lack of lymphatic vessels resulted in prenatal death due to fluid accumulation in tissues, and Vegfc+/− mice developed cutaneous lymphatic hypoplasia and lymphedema. Our results indicate that VEGF-C is the paracrine factor essential for lymphangiogenesis, and show that both Vegfc alleles are required for normal lymphatic development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic targeting of the Vegfc locus.
Figure 2: Vegfc expression is associated with lymphatic vascular development.
Figure 3: Vegfc deficiency results in failure of lymphatic vascular development.
Figure 4: VEGF-C is required for migration of Prox-1-expressing endothelial cells.
Figure 5: Developmental and functional defects of the lymphatic vessels in Vegfc+/− mice.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Rossant, J. & Howard, L. Signaling pathways in vascular development. Annu. Rev. Cell Dev. Biol. 18, 541–573 (2002).

    Article  CAS  Google Scholar 

  2. De Togni, P. et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264, 703–707 (1994).

    Article  CAS  Google Scholar 

  3. Rennert, P.D., Browning, J.L., Mebius, R., Mackay, F. & Hochman, P.S. Surface lymphotoxin a/b complex is required for the development of peripheral lymphoid organs. J. Exp. Med. 184, 1999–2006 (1996).

    Article  CAS  Google Scholar 

  4. Mebius, R.E. Organogenesis of lymphoid tissues. Nat. Rev. Immunol. 3, 292–303 (2003).

    Article  CAS  Google Scholar 

  5. Futterer, A., Mink, K., Luz, A., Kosco-Vilbois, M.H. & Pfeffer, K. The lymphotoxin b receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 9, 59–70 (1998).

    Article  CAS  Google Scholar 

  6. Sabin, F.R. On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig. Am. J. Anat. 1, 367–391 (1902).

    Article  Google Scholar 

  7. van der Putte, S.C.J. The early development of the lymphatic system in mouse embryos. Acta Morphol. Neerl.-Scand. 13, 245–286 (1975).

    CAS  PubMed  Google Scholar 

  8. Oliver, G. & Detmar, M. The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Genes Dev. 16, 773–783 (2002).

    Article  CAS  Google Scholar 

  9. Wigle, J.T. & Oliver, G. Prox1 function is required for the development of the murine lymphatic system. Cell 98, 769–778 (1999).

    Article  CAS  Google Scholar 

  10. Wigle, J.T. et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 21, 1505–1513 (2002).

    Article  CAS  Google Scholar 

  11. Petrova, T.V. et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J. 21, 4593–4599 (2002).

    Article  CAS  Google Scholar 

  12. Hong, Y.K. et al. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev. Dyn. 225, 351–357 (2002).

    Article  CAS  Google Scholar 

  13. Dumont, D.J. et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282, 946–949 (1998).

    Article  CAS  Google Scholar 

  14. Kaipainen, A. et al. Expression of the fms-like tyrosine kinase FLT4 gene becomes restricted to lymphatic endothelium during development. Proc. Natl. Acad. Sci. USA 92, 3566–3570 (1995).

    Article  CAS  Google Scholar 

  15. Makinen, T. et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 20, 4762–4773 (2001).

    Article  CAS  Google Scholar 

  16. Jeltsch, M. et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276, 1423–1425 (1997).

    Article  CAS  Google Scholar 

  17. Veikkola, T. et al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J. 6, 1223–1231 (2001).

    Article  Google Scholar 

  18. Karkkainen, M.J. et al. Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat. Genet. 25, 153–159 (2000).

    Article  CAS  Google Scholar 

  19. Joukov, V. et al. Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J. 16, 3898–3911 (1997).

    Article  CAS  Google Scholar 

  20. Achen, M.G. et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc. Natl. Acad. Sci. USA 95, 548–553 (1998).

    Article  CAS  Google Scholar 

  21. Saaristo, A. et al. Adenoviral VEGF-C overexpression induces blood vessel enlargement, tortuosity, and leakiness but no sprouting angiogenesis in the skin or mucous membranes. FASEB J. 16, 1041–1049 (2002).

    Article  CAS  Google Scholar 

  22. Stacker, S.A. et al. Biosynthesis of vascular endothelial growth factor-D involves proteolytic processing which generates non-covalent homodimers. J. Biol. Chem. 274, 32127–32136 (1999).

    Article  CAS  Google Scholar 

  23. Kukk, E. et al. VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 122, 3829–3837 (1996).

    CAS  PubMed  Google Scholar 

  24. Prevo, R., Banerji, S., Ferguson, D.J.P., Clasper, S. & Jackson, D.G. Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J. Biol. Chem. 276, 19420–19430 (2001).

    Article  CAS  Google Scholar 

  25. Breiteneder-Geleff, S. et al. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am. J. Pathol. 154, 385–394 (1999).

    Article  CAS  Google Scholar 

  26. Schacht, V. et al. T1a/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J. 22, 3546–3556 (2003).

    Article  CAS  Google Scholar 

  27. Baldwin, M.E. et al. The specificity of receptor binding by vascular endothelial growth factor-D is different in mouse and man. J. Biol. Chem. 276, 19166–19171 (2001).

    Article  CAS  Google Scholar 

  28. Shalaby, F. et al. Failure of blood island formation and vasculogenesis in Flk-1-deficient mice. Nature 376, 62–66 (1995).

    Article  CAS  Google Scholar 

  29. Avantaggiato, V., Orlandini, M., Acampora, D., Oliviero, S. & Simeone, A. Embryonic expression pattern of the murine figf gene, a growth factor belonging to platelet-derived growth factor/vascular endothelial growth factor family. Mech. Dev. 73, 221–224 (1998).

    Article  CAS  Google Scholar 

  30. Karkkainen, M.J. et al. A model for gene therapy of human hereditary lymphedema. Proc. Natl. Acad. Sci. USA 98, 12677–12682 (2001).

    Article  CAS  Google Scholar 

  31. Yuan, L. et al. Abnormal lymphatic vessel development in neuropilin-2 mutant mice. Development 129, 4797–4806 (2002).

    CAS  PubMed  Google Scholar 

  32. Soker, S., Takashima, S., Miao, H.Q., Neufeld, G. & Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735–745 (1998).

    Article  CAS  Google Scholar 

  33. Gale, N.W. et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role Is rescued by angiopoietin-1. Dev. Cell 3, 411–423 (2002).

    Article  CAS  Google Scholar 

  34. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    Article  CAS  Google Scholar 

  35. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996).

    Article  CAS  Google Scholar 

  36. Bellomo, D. et al. Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ. Res. 86, E29–E35 (2000).

    Article  CAS  Google Scholar 

  37. Aase, K. et al. Vascular endothelial growth factor-B-deficient mice display an atrial conduction defect. Circulation 104, 358–364 (2001).

    Article  CAS  Google Scholar 

  38. Carmeliet, P. et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat. Med. 7, 575–583 (2001).

    Article  CAS  Google Scholar 

  39. Puri, M.C., Rossant, J., Alitalo, K., Bernstein, A. & Partanen, J. The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. EMBO J. 14, 5884–5891 (1995).

    Article  CAS  Google Scholar 

  40. Kubo, H. et al. Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis. Blood 96, 546–553 (2000).

    CAS  PubMed  Google Scholar 

  41. Laakkonen, P., Porkka, K., Hoffman, J.A. & Ruoslahti, E. A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nat. Med. 8, 751–755 (2002).

    Article  CAS  Google Scholar 

  42. Sainio, K. Experimental methods for studying urogenital development. The Kidney. From normal development to congenital disease (eds. Vize, P.D., Woolf, A.S. & Bard, J.B.L.) 327–342 (Elsevier Science, San Diego, 2003).

    Google Scholar 

  43. Sainio, K. et al. Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development 124, 4077–4087 (1997).

    CAS  PubMed  Google Scholar 

  44. Larsen, W.J. Human Embryology. 192 (Harcourt, New York, 1993).

    Google Scholar 

Download references

Acknowledgements

We thank K. Karila and E. Valdre for their help in generating mice; S. Nuutinen and M. Jauhiainen for analysis of chylous fluid; H. Kubo, E. Ruoslahti, M. Quintanilla, H. Kowalski and D. Kerjaschki for antibodies; and T. Tainola, S. Karttunen, K. Makkonen, A. Parsons, P. Hyvarinen, M. Pajuportti, A. Flint and A. Vihera for technical assistance. Supported by grants from the Finnish Cancer Organizations, Academy of Finland (202852 and 204312), Novo Nordisk Foundation, Helsinki University Hospital Funds (TYH2301 and TYH1313), The Human Frontier Science Foundation, the European Union (Angionet QLC1-CT-2001-01172) and National Institutes of Health (HD37243).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kari Alitalo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karkkainen, M., Haiko, P., Sainio, K. et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5, 74–80 (2004). https://doi.org/10.1038/ni1013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1013

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing