Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Nanofluidic proteomic assay for serial analysis of oncoprotein activation in clinical specimens

Abstract

Current methods of protein detection are insensitive to detecting subtle changes in oncoprotein activation that underlie key cancer signaling processes. The requirement for large numbers of cells precludes serial tumor sampling for assessing a response to therapeutics. Therefore, we have developed a nanofluidic proteomic immunoassay (NIA) to quantify total and low-abundance protein isoforms in nanoliter volumes. Our method can quantify amounts of MYC oncoprotein and B cell lymphoma protein-2 (BCL2) in Burkitt's and follicular lymphoma; identify changes in activation of extracellular signal–related kinases-1 (ERK1) and ERK2, mitogen-activated kinase-1 (MEK), signal transducer and activator of transcription protein-3 (STAT3) and STAT5, c-Jun N-terminal kinase (JNK) and caspase-3 in imatinib-treated chronic myelogeneous leukemia (CML) cells; measure an unanticipated change in the phosphorylation of an ERK2 isomer in individuals with CML who responded to imatinib; and detect a decrease in STAT3 and STAT5 phosphorylation in individuals with lymphoma who were treated with atorvastatin. Therefore, we have described a new and highly sensitive method for determining oncoprotein expression and phosphorylation in clinical specimens for the development of new therapeutics for cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NIA for the quantitative analysis of oncoproteins.
Figure 2: NIA for the detection of oncoproteins in human cancer specimens.
Figure 3: NIA detection of changes in oncoprotein activation in CML cells treated with imatinib.
Figure 4: NIA detected changes in pERK in individuals with CML who responded to imatinib treatment.
Figure 5: NIA detected decrease in oncoproteins upon treatment with biologic response modifying therapeutic agent.

Similar content being viewed by others

References

  1. Futreal, P.A. et al. Cancer and genomics. Nature 409, 850–852 (2001).

    Article  CAS  Google Scholar 

  2. Harris, H. Tumour suppression: putting on the brakes. Nature 427, 201 (2004).

    Article  CAS  Google Scholar 

  3. Sharpless, N.E. & DePinho, R.A. Cancer: crime and punishment. Nature 436, 636–637 (2005).

    Article  CAS  Google Scholar 

  4. Vogelstein, B. & Kinzler, K.W. Cancer genes and the pathways they control. Nat. Med. 10, 789–799 (2004).

    Article  CAS  Google Scholar 

  5. Dalla-Favera, R. et al. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc. Natl. Acad. Sci. USA 79, 7824–7827 (1982).

    Article  CAS  Google Scholar 

  6. Ferry, J.A. Burkitt's lymphoma: clinicopathologic features and differential diagnosis. Oncologist 11, 375–383 (2006).

    Article  Google Scholar 

  7. Dang, C.V., O'Donnell, K.A. & Juopperi, T. The great MYC escape in tumorigenesis. Cancer Cell 8, 177–178 (2005).

    Article  CAS  Google Scholar 

  8. Tsujimoto, Y., Cossman, J., Jaffe, E. & Croce, C.M. Involvement of the bcl-2 gene in human follicular lymphoma. Science 228, 1440–1443 (1985).

    Article  CAS  Google Scholar 

  9. Bordeleau, L. & Berinstein, N.L. Molecular diagnostics in follicular non-Hodgkin's lymphoma: a review. Semin. Oncol. 27, 42–52 (2000).

    CAS  PubMed  Google Scholar 

  10. Lugo, T.G., Pendergast, A.M., Muller, A.J. & Witte, O.N. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 247, 1079–1082 (1990).

    Article  CAS  Google Scholar 

  11. Melo, J.V. & Barnes, D.J. Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat. Rev. Cancer 7, 441–453 (2007).

    Article  CAS  Google Scholar 

  12. Weisberg, E., Manley, P.W., Cowan-Jacob, S.W., Hochhaus, A. & Griffin, J.D. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat. Rev. Cancer 7, 345–356 (2007).

    Article  CAS  Google Scholar 

  13. Ghaffari, S., Daley, G.Q. & Lodish, H.F. Growth factor independence and BCR/ABL transformation: promise and pitfalls of murine model systems and assays. Leukemia 13, 1200–1206 (1999).

    Article  CAS  Google Scholar 

  14. Felsher, D.W. Cancer revoked: oncogenes as therapeutic targets. Nat. Rev. Cancer 3, 375–380 (2003).

    Article  CAS  Google Scholar 

  15. Giuriato, S., Rabin, K., Fan, A.C., Shachaf, C.M. & Felsher, D.W. Conditional animal models: a strategy to define when oncogenes will be effective targets to treat cancer. Semin. Cancer Biol. 14, 3–11 (2004).

    Article  CAS  Google Scholar 

  16. Druker, B.J. et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001).

    Article  CAS  Google Scholar 

  17. Kantarjian, H. et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N. Engl. J. Med. 346, 645–652 (2002).

    Article  CAS  Google Scholar 

  18. Weisberg, E. et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7, 129–141 (2005).

    Article  CAS  Google Scholar 

  19. Brozik, A. et al. Reduction of Bcr-Abl function leads to erythroid differentiation of K562 cells via downregulation of ERK. Ann. NY Acad. Sci. 1090, 344–354 (2006).

    Article  CAS  Google Scholar 

  20. Kohmura, K., Miyakawa, Y., Kawai, Y., Ikeda, Y. & Kizaki, M. Different roles of p38 MAPK and ERK in STI571-induced multi-lineage differentiation of K562 cells. J. Cell. Physiol. 198, 370–376 (2004).

    Article  CAS  Google Scholar 

  21. Solit, D.B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 439, 358–362 (2006).

    Article  CAS  Google Scholar 

  22. O'Neill, R.A. et al. Isoelectric focusing technology quantifies protein signaling in 25 cells. Proc. Natl. Acad. Sci. USA 103, 16153–16158 (2006).

    Article  CAS  Google Scholar 

  23. Felsher, D.W. & Bishop, J.M. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell 4, 199–207 (1999).

    Article  CAS  Google Scholar 

  24. Karlsson, A. et al. Genomically complex lymphomas undergo sustained tumor regression upon MYC inactivation unless they acquire novel chromosomal translocations. Blood 101, 2797–2803 (2003).

    Article  CAS  Google Scholar 

  25. Giuriato, S. et al. Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch. Proc. Natl. Acad. Sci. USA 103, 16266–16271 (2006).

    Article  CAS  Google Scholar 

  26. Shachaf, C.M. et al. Inhibition of HMGcoA reductase by atorvastatin prevents and reverses MYC-induced lymphomagenesis. Blood 110, 2674–2684 (2007).

    Article  CAS  Google Scholar 

  27. Mitani, S., Sugawara, I., Shiku, H. & Mori, S. Expression of c-myc oncogene product and ras family oncogene products in various human malignant lymphomas defined by immunohistochemical techniques. Cancer 62, 2085–2093 (1988).

    Article  CAS  Google Scholar 

  28. Wennborg, A.D., Altiok, E., Moore, J.P., Ernberg, I. & Klein, G. Differential c-myc protein expression in Burkitt's lymphomas and EBV-transformed lymphoblastoid lines. Eur. J. Cancer 27, 1643–1645 (1991).

    Article  CAS  Google Scholar 

  29. Johnson, N.A. et al. Prognostic significance of secondary cytogenetic alterations in follicular lymphomas. Genes Chromosom. Cancer 47, 1038–1048 (2008).

    Article  CAS  Google Scholar 

  30. Hann, S.R. & Eisenman, R.N. Proteins encoded by the human c-myc oncogene: differential expression in neoplastic cells. Mol. Cell. Biol. 4, 2486–2497 (1984).

    Article  CAS  Google Scholar 

  31. Ramsay, G., Evan, G.I. & Bishop, J.M. The protein encoded by the human proto-oncogene c-myc. Proc. Natl. Acad. Sci. USA 81, 7742–7746 (1984).

    Article  CAS  Google Scholar 

  32. Barrans, S.L. et al. Germinal center phenotype and bcl-2 expression combined with the International Prognostic Index improves patient risk stratification in diffuse large B-cell lymphoma. Blood 99, 1136–1143 (2002).

    Article  CAS  Google Scholar 

  33. Colomo, L. et al. Clinical impact of the differentiation profile assessed by immunophenotyping in patients with diffuse large B-cell lymphoma. Blood 101, 78–84 (2003).

    Article  CAS  Google Scholar 

  34. Gascoyne, R.D. et al. Prognostic significance of Bcl-2 protein expression and Bcl-2 gene rearrangement in diffuse aggressive non-Hodgkin's lymphoma. Blood 90, 244–251 (1997).

    CAS  PubMed  Google Scholar 

  35. Calvo, K.R. et al. IL-4 protein expression and basal activation of Erk in vivo in follicular lymphoma. Blood 112, 3818–3826 (2008).

    Article  CAS  Google Scholar 

  36. Camacho, F.I. et al. Nodal marginal zone lymphoma: a heterogeneous tumor: a comprehensive analysis of a series of 27 cases. Am. J. Surg. Pathol. 27, 762–771 (2003).

    Article  Google Scholar 

  37. Dierlamm, J. et al. Marginal zone B-cell lymphomas of different sites share similar cytogenetic and morphologic features. Blood 87, 299–307 (1996).

    CAS  PubMed  Google Scholar 

  38. Irish, J.M., Czerwinski, D.K., Nolan, G.P. & Levy, R. Altered B-cell receptor signaling kinetics distinguish human follicular lymphoma B cells from tumor-infiltrating nonmalignant B cells. Blood 108, 3135–3142 (2006).

    Article  CAS  Google Scholar 

  39. Lee, T., Yao, G., Nevins, J. & You, L. Sensing and integration of Erk and PI3K signals by Myc. PLOS Comput. Biol. 4, e1000013 (2008).

    Article  Google Scholar 

  40. Obenauer, J.C., Cantley, L.C. & Yaffe, M.B. Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res. 31, 3635–3641 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This manuscript is dedicated to the memory of Roger O'Neill. This work was supported, in part, by the US National Cancer Institute grants CA89305, CA034233, P01 CA034233, NIH/NCI ICMIC P50, Burroughs Welcome Fund, the Damon Runyon Foundation (to D.W.F.), and the Leukemia and Lymphoma Society (to D.W.F. and A.C.F.). We thank the members of the Felsher laboratory for their helpful suggestions. We thank W.-K. Weng (Stanford Bone Marrow Transplantation Division) for providing access to previously banked tumor samples and the Stanford Hematology Division Tissue Bank for the use of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean W Felsher.

Ethics declarations

Competing interests

D.W.F. is a consultant for Cell Biosciences, and D.W.V., D.D.-B., R. O. and D.T. were employees of Cell Biosciences at the time the experiments were performed.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–6, Supplementary Table 1 and Supplementary Methods (PDF 2924 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, A., Deb-Basu, D., Orban, M. et al. Nanofluidic proteomic assay for serial analysis of oncoprotein activation in clinical specimens. Nat Med 15, 566–571 (2009). https://doi.org/10.1038/nm.1903

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.1903

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing