Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adverse effects of anticancer agents that target the VEGF pathway

Abstract

Antiangiogenesis agents that target the VEGF/VEGF receptor pathway have become an important part of standard therapy in multiple cancer indications. With expanded clinical experience with this class of agents has come the increasing recognition of the diverse adverse effects related to disturbance of VEGF-dependent physiological functions and homeostasis in the cardiovascular and renal systems, as well as wound healing and tissue repair. Although most adverse effects of VEGF inhibitors are modest and manageable, some are associated with serious and life-threatening consequences, particularly in high-risk patients and in certain clinical settings. This Review examines the toxicity profiles of anti-VEGF antibodies and small-molecule inhibitors. The potential mechanisms of the adverse effects, risk factors, and the implications for selection of patients and management are discussed.

Key Points

  • Adverse effects associated with both VEGF- and VEGFR-targeting monoclonal antibodies and tyrosine kinase inhibitors are diverse, and include hypertension, arterial thromboembolic events, proteinuria, bowel perforation, reversible posterior leukoencephalopathy syndrome, wound complications and hemorrhage

  • Risk of serious adverse events may be increased by a multitude of risk factors related to the tumor characteristics and locations, comorbidities, and prior or concurrent anticancer therapy

  • Risk–benefit assessment is important for individual patients considering antiangiogenesis therapy

  • In order to provide evidence-based guidance for risk identification, toxicity management and treatment adjustment for antiangiogenesis agents further research in this area is warranted

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selected physiological functions of VEGF/VEGFR signaling and consequence of the pathway blockage.

Similar content being viewed by others

References

  1. Ferrara, N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin. Oncol. 29, 10–14 (2002).

    CAS  PubMed  Google Scholar 

  2. Sane, D. C., Anton, L. & Brosnihan, K. B. Angiogenic growth factors and hypertension. Angiogenesis 7, 193–201 (2004).

    CAS  PubMed  Google Scholar 

  3. van Heeckeren, W. J., Ortiz, J., Cooney, M. M. & Remick, S. C. Hypertension, proteinuria, and antagonism of vascular endothelial growth factor signaling: clinical toxicity, therapeutic target, or novel biomarker? J. Clin. Oncol. 25, 2993–2995 (2007).

    CAS  PubMed  Google Scholar 

  4. Hood, J. D., Meininger, C. J., Ziche, M. & Granger, H. J. VEGF upregulates ecNOS message, protein, and NO production in human endothelial cells. Am. J. Physiol. 274, H1054–H1058 (1998).

    CAS  PubMed  Google Scholar 

  5. Horowitz, J. R. et al. Vascular endothelial growth factor/vascular permeability factor produces nitric oxide-dependent hypotension. Evidence for a maintenance role in quiescent adult endothelium. Arterioscler. Thromb. Vasc. Biol. 17, 2793–2800 (1997).

    CAS  PubMed  Google Scholar 

  6. Ciuffetti, G. et al. Capillary rarefaction and abnormal cardiovascular reactivity in hypertension. J. Hypertens. 21, 2297–2303 (2003).

    CAS  PubMed  Google Scholar 

  7. Steeghs, N. et al. VEGFR2 blockade in patients with solid tumors: mechanisms of hypertension and effects on vascular function [abstract]. J. Clin. Oncol. 24, A3037 (2006).

    Google Scholar 

  8. Yang, J. C. et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N. Engl. J. Med. 349, 427–434 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Maitland, M. L. et al. Blood pressure (BP) as a biomarker for sorafenib (S.), an inhibitor of the vascular endothelial growth factor (VEGF) signaling pathway [abstract]. ASCO Meeting Abstracts. 24, 2035 (2006).

    Google Scholar 

  10. Faivre, S. et al. Safety, pharmacokinetic, and antitumor activity of su11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J. Clin. Oncol. 24, 25–35 (2006).

    CAS  PubMed  Google Scholar 

  11. Furuse, J. et al. Phase I study of sorafenib in Japanese patients with hepatocellular carcinoma. Cancer Sci. 99, 159–165 (2008).

    CAS  PubMed  Google Scholar 

  12. Minami, H. et al. Phase I and pharmacokinetic study of sorafenib, an oral multikinase inhibitor, in Japanese patients with advanced refractory solid tumors. Cancer Sci. 99, 1492–1498 (2008).

    CAS  PubMed  Google Scholar 

  13. Drevs, J. et al. Phase I clinical study of AZD2171, an oral vascular endothelial growth factor signaling inhibitor, in patients with advanced solid tumors. J. Clin. Oncol. 25, 3045–3054 (2007).

    CAS  PubMed  Google Scholar 

  14. Wedge, S. R. et al. AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res. 65, 4389–4400 (2005).

    CAS  PubMed  Google Scholar 

  15. Choueiri, T. K. Axitinib, a novel anti-angiogenic drug with promising activity in various solid tumors. Curr. Opin. Investig. Drugs 9, 658–671 (2008).

    CAS  PubMed  Google Scholar 

  16. Hu-Lowe, D. D. et al. Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin. Cancer Res. 14, 7272–7283 (2008).

    CAS  PubMed  Google Scholar 

  17. Wilhelm, S. M. et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64, 7099–7109 (2004).

    CAS  PubMed  Google Scholar 

  18. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125–134 (2007).

    CAS  PubMed  Google Scholar 

  19. Llovet, J. M. et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359, 378–390 (2008).

    CAS  PubMed  Google Scholar 

  20. Demetri, G. D. et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368, 1329–1338 (2006).

    CAS  PubMed  Google Scholar 

  21. Motzer, R. J. et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 356, 115–124 (2007).

    CAS  PubMed  Google Scholar 

  22. Schneider, B. P. et al. Association of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 genetic polymorphisms with outcome in a trial of paclitaxel compared with paclitaxel plus bevacizumab in advanced breast cancer: ECOG 2100. J. Clin. Oncol. 26, 4672–4678 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chobanian, A. V. et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 289, 2560–2572 (2003).

    CAS  PubMed  Google Scholar 

  24. Avastin® (bevacizumab) package insert (Genentech Inc., 2008).

  25. Eppler, S. M. et al. A target-mediated model to describe the pharmacokinetics and hemodynamic effects of recombinant human vascular endothelial growth factor in humans. Clin. Pharmacol. Ther. 72, 20–32 (2002).

    CAS  PubMed  Google Scholar 

  26. Scappaticci, F. A. et al. Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. J. Natl Cancer Inst. 99, 1232–1239 (2007).

    PubMed  Google Scholar 

  27. Roncalli, J. et al. Bevacizumab in metastatic colorectal cancer: a left intracardiac thrombotic event. Ann. Oncol. 17, 1177–1178 (2006).

    CAS  PubMed  Google Scholar 

  28. Giordano, F. J. et al. A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proc. Natl Acad. Sci. USA 98, 5780–5785 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sarzani, R., Arnaldi, G. & Chobanian, A. V. Hypertension-induced changes of platelet-derived growth factor receptor expression in rat aorta and heart. Hypertension 17, 888–895 (1991).

    CAS  PubMed  Google Scholar 

  30. Liu, J., Wu, L. L., Li, L., Zhang, L. & Song, Z. E. Growth-promoting effect of platelet-derived growth factor on rat cardiac myocytes. Regul. Pept. 127, 11–18 (2005).

    CAS  PubMed  Google Scholar 

  31. Sutent® (sunitinib) package insert (Pfizer Labs, 2006).

  32. Miller, K. D. et al. Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J. Clin. Oncol. 23, 792–799 (2005).

    CAS  PubMed  Google Scholar 

  33. Karp, J. E. et al. Targeting vascular endothelial growth factor for relapsed and refractory adult acute myelogenous leukemias: therapy with sequential 1-{beta}-d-arabinofuranosylcytosine, mitoxantrone, and bevacizumab. Clin. Cancer Res. 10, 3577–3585 (2004).

    CAS  PubMed  Google Scholar 

  34. D'Adamo, D. R. et al. Phase II study of doxorubicin and bevacizumab for patients with metastatic soft-tissue sarcomas. J. Clin. Oncol. 23, 7135–7142 (2005).

    CAS  PubMed  Google Scholar 

  35. Miller, K., O'Neill, A., Perez, E., Seidman, A. & Sledge, G. W. Phase II feasibility trial incorporating bevacizumab into dose-dense doxorubicin and cyclophosphamide followed by paclitaxel in patients with lymph node-positive breast cancer: a trial of the Eastern Cooperative Oncology Group (E2104) [abstract]. ASCO Meeting Abstracts 26, 520 (2008).

    Google Scholar 

  36. Chu, T. F. et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet 370, 2011–2019 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Khakoo, A. Y. et al. Heart failure associated with sunitinib malate. Cancer 112, 2500–2508 (2008).

    CAS  PubMed  Google Scholar 

  38. Goodman, V. L. et al. Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin. Cancer Res. 13, 1367–1373 (2007).

    CAS  PubMed  Google Scholar 

  39. Eremina, V. et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J. Clin. Invest. 111, 707–716 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Schrijvers, B. F., Flyvbjerg, A. & De Vriese, A. S. The role of vascular endothelial growth factor (VEGF) in renal pathophysiology. Kidney Int. 65, 2003–2017 (2004).

    CAS  PubMed  Google Scholar 

  41. Eremina, V. et al. VEGF inhibition and renal thrombotic microangiopathy. N. Engl. J. Med. 358, 1129–1136 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Barakat, R. K. et al. Interstitial nephritis secondary to bevacizumab treatment in metastatic leiomyosarcoma. Ann. Pharmacother. 41, 707–10 (2007).

    CAS  PubMed  Google Scholar 

  43. Frangié, C. et al. Renal thrombotic microangiopathy caused by anti-VEGF-antibody treatment for metastatic renal-cell carcinoma. Lancet Oncol. 8, 177–178 (2007).

    PubMed  Google Scholar 

  44. Roncone, D., Satoskar, A., Nadasdy, T., Monk, J. P. & Rovin, B. H. Proteinuria in a patient receiving anti-VEGF therapy for metastatic renal cell carcinoma. Nat. Clin. Pract. Nephrol. 3, 287–293 (2007).

    PubMed  Google Scholar 

  45. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    CAS  PubMed  Google Scholar 

  46. Miller, K. et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 357, 2666–2676 (2007).

    CAS  PubMed  Google Scholar 

  47. Giantonio, B. J. et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J. Clin. Oncol. 25, 1539–1544 (2007).

    CAS  PubMed  Google Scholar 

  48. Sandler, A. et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med. 355, 2542–2550 (2006).

    CAS  PubMed  Google Scholar 

  49. Escudier, B. et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370, 2103–2111 (2007).

    PubMed  Google Scholar 

  50. Rixe, O. et al. Axitinib treatment in patients with cytokine-refractory metastatic renal-cell cancer: a phase II study. Lancet Oncol. 8, 975–984 (2007).

    PubMed  Google Scholar 

  51. Izzedine, H., Brocheriou, I., Deray, G. & Rixe, O. Thrombotic microangiopathy and anti-VEGF agents. Nephrol. Dial. Transplant. 22, 1481–1482 (2007).

    PubMed  Google Scholar 

  52. Bollée, G. et al. Thrombotic microangiopathy secondary to VEGF pathway inhibition by sunitinib. Nephrol. Dial. Transplant. 24, 682–685 (2009).

    PubMed  Google Scholar 

  53. Kapiteijn, E., Brand, A., Kroep, J. & Gelderblom, H. Sunitinib induced hypertension, thrombotic microangiopathy and reversible posterior leukencephalopathy syndrome. Ann. Oncol. 18, 1745–1747 (2007).

    CAS  PubMed  Google Scholar 

  54. Levey, S. A. et al. Thrombotic microangiopathy associated with sunitinib, a VEGF inhibitor, in a patient with factor V Leiden mutation. NDT Plus 1, 154–156 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Feldman, D. et al. Phase I trial of bevacizumab plus sunitinib in patients with metastatic renal cell carcinoma [abstract]. ASCO Meeting Abstracts 26, 5100 (2008).

    Google Scholar 

  56. Spano, J. P. et al. Efficacy of gemcitabine plus axitinib compared with gemcitabine alone in patients with advanced pancreatic cancer: an open-label randomised phase II study. Lancet 371, 2101–2108 (2008).

    CAS  PubMed  Google Scholar 

  57. Isambert, N. et al. A phase I dose escalation and pharmacokinetic (PK) study of intravenous aflibercept (VEGF trap) plus docetaxel (D) in patients (pts) with advanced solid tumors: Preliminary results [abstract]. ASCO Meeting Abstracts 26, 3599 (2008).

    Google Scholar 

  58. Novotny, W. et al. Identification of squamous cell histology and central, cavitary tumors as possible risk factors for pulmonary hemorrhage (PH) in patients with advanced NSCLC receiving Bevacizumab (BV) [abstract]. Proc. Am. Soc. Clin. Oncol. 20, 1318 (2001).

    Google Scholar 

  59. Hanna, N., von Pawel, J., Reck, M. & Scagliotti, G. Carboplatin/paclitaxel with/without sorafenib in chemonaive patients with stage IIIB-IV non-small cell lung cancer (NSCLC): Interim analysis (IA) results from a randomized phase III trial (ESCAPE) [abstract]. J. Thorac. Oncol. 3, A13 (2008).

    Google Scholar 

  60. Socinski, M. A. et al. Efficacy and safety of sunitinib in previously treated, advanced non-small cell lung cancer (NSCLC): Preliminary results of a multicenter phase II trail [abstract]. ASCO Meeting Abstracts 24, 7001 (2006).

    Google Scholar 

  61. Amgen Press Release. Amgen, Takeda and Millennium provide update on phase 3 trial of Motesanib in patients with non-small cell lung cancer. http://www.amgen.com/media/media_pr_detail.jsp?year=2008&releaseID=1228588 (2008).

  62. Sandler, A. et al. Retrospective study of clinical and radiographic risk factors associated with early onset, severe pulmonary hemorrhage in bevacizumab-treated patients with advanced non-small cell lung cancer (NSCLC) [abstract]. ASCO Meeting Abstracts 26, 8074 (2008).

    Google Scholar 

  63. McDermott, D. F. et al. Double-blind randomized phase II study of the combination of sorafenib and dacarbazine in patients with advanced melanoma: a report from the 11715 Study Group. J. Clin. Oncol. 26, 2178–2185 (2008).

    CAS  PubMed  Google Scholar 

  64. Burger, R. A., Sill, M. W., Monk, B. J., Greer, B. E. & Sorosky, J. I. Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a Gynecologic Oncology Group Study. J. Clin. Oncol. 25, 5165–5171 (2007).

    CAS  PubMed  Google Scholar 

  65. Cannistra, S. A. et al. Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. J. Clin. Oncol. 25, 5180–5186 (2007).

    CAS  PubMed  Google Scholar 

  66. Han, E. S. & Monk, B. J. Bevacizumab in the treatment of ovarian cancer. Expert Rev. Anticancer Ther. 7, 1339–1345 (2007).

    CAS  PubMed  Google Scholar 

  67. Nexavar® (sorafenib) package insert (Bayer HealthCare Pharmaceuticals Inc., 2008).

  68. Streit, M. et al. Thrombospondin-1 suppresses wound healing and granulation tissue formation in the skin of transgenic mice. EMBO J. 19, 3272–3282 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Scappaticci, F. A. et al. Surgical wound healing complications in metastatic colorectal cancer patients treated with bevacizumab. J. Surg. Oncol. 91, 173–180 (2005).

    CAS  PubMed  Google Scholar 

  70. Allegra, C. J. et al. Initial safety report of NSABP C-08: a randomized phase III study of modified FOLFOX6 with or without bevacizumab for the adjuvant treatment of patients with stage II or III colon cancer. J. Clin. Oncol. doi:10.1200/JCO.2009.21.9220.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. ClinicalTrial.gov, [online] (2009).

  72. Lu, J. F. et al. Clinical pharmacokinetics of bevacizumab in patients with solid tumors. Cancer Chemother. Pharmacol. 62, 779–786 (2008).

    CAS  PubMed  Google Scholar 

  73. Wedam, S. B. et al. Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer. J. Clin. Oncol. 24, 769–777 (2006).

    CAS  PubMed  Google Scholar 

  74. Stott, V. L., Hurrell, M. A. & Anderson, T. J. Reversible posterior leukoencephalopathy syndrome: a misnomer reviewed. Intern. Med. J. 35, 83–90 (2005).

    CAS  PubMed  Google Scholar 

  75. Lamy, C., Oppenheim, C., Méder, J. F. & Mas, J. L. Neuroimaging in posterior reversible encephalopathy syndrome. J. Neuroimaging 14, 89–96 (2004).

    CAS  PubMed  Google Scholar 

  76. Glusker, P., Recht, L. & Lane, B. Reversible posterior leukoencephalopathy syndrome and bevacizumab. N. Engl. J. Med. 354, 980–982 (2006).

    CAS  PubMed  Google Scholar 

  77. Allen, J. A., Adlakha, A. & Bergethon, P. R. Reversible posterior leukoencephalopathy syndrome after bevacizumab/folfiri regimen for metastatic colon cancer. Arch. Neurol. 63, 1475–1478 (2006).

    PubMed  Google Scholar 

  78. Govindarajan, R., Adusumilli, J., Baxter, D. L., El-Khoueiry, A. & Harik, S. I. Reversible posterior leukoencephalopathy syndrome induced by RAF kinase inhibitor BAY 43–9006 J. Clin. Oncol. 24, e48 (2006).

    PubMed  Google Scholar 

  79. Martín, G., Bellido, L. & Cruz, J. J. Reversible posterior leukoencephalopathy syndrome induced by sunitinib. J. Clin. Oncol. 25, 3559 (2007).

    PubMed  Google Scholar 

  80. Marinella, M. A. & Markert, R. J. Reversible posterior leukoencephalopathy syndrome associated with anticancer drugs. Intern. Med. J. doi:10.1111/j.1445–59942008.01829.x.

  81. Katoh, O., Tauchi, H., Kawaishi, K., Kimura, A. & Satow, Y. Expression of the vascular endothelial growth factor (VEGF) receptor gene, KDR, in hematopoietic cells and inhibitory effect of vegf on apoptotic cell death caused by ionizing radiation. Cancer Res. 55, 5687–5692 (1995).

    CAS  PubMed  Google Scholar 

  82. Gerber, H. P. et al. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 417, 954–958 (2002).

    CAS  PubMed  Google Scholar 

  83. Nalluri, S. R., Chu, D., Keresztes, R., Zhu, X. & Wu, S. Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis. JAMA 300, 2277–2285 (2008).

    CAS  PubMed  Google Scholar 

  84. Kamba, T. et al. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am. J. Physiol. Heart Circ. Physiol. 290, H560–H576 (2006).

    CAS  PubMed  Google Scholar 

  85. Desai, J. et al. Hypothyroidism after sunitinib treatment for patients with gastrointestinal stromal tumors. Ann. Intern. Med. 145, 660–664 (2006).

    PubMed  Google Scholar 

  86. Ramalingam, S. S. et al. Outcomes for elderly, advanced-stage non small-cell lung cancer patients treated with bevacizumab in combination with carboplatin and paclitaxel: analysis of Eastern Cooperative Oncology Group Trial 4599. J. Clin. Oncol. 26, 60–65 (2008).

    CAS  PubMed  Google Scholar 

  87. Azad, N. S. et al. Hand-foot skin reaction increases with cumulative sorafenib dose and with combination anti-vascular endothelial growth factor therapy. Clin. Cancer Res. 15, 1411–1416 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wakelee, H. et al. Cooperative group research efforts in lung cancer 2008: focus on advanced-stage non-small-cell lung cancer. Clin. Lung Cancer 9, 346–351 (2008).

    PubMed  Google Scholar 

  89. Azad, N. S. et al. Combination targeted therapy with sorafenib and bevacizumab results in enhanced toxicity and antitumor activity. J. Clin. Oncol. 26, 3709–3714 (2008).

    CAS  PubMed  Google Scholar 

  90. Puzanov, I. et al. Final results of a phase I trial of sorafenib and bevacizumab in patients with metastatic renal cell cancer (mRCC) [abstract]. AACR Meeting Abstracts 2007, A19 (2007).

  91. Merchan, J. R. et al. Phase I/II trial of CCI-779 and bevacizumab in stage IV renal cell carcinoma: Phase I safety and activity results [abstract]. ASCO Meeting Abstracts 25, 5034 (2007).

    Google Scholar 

  92. Zafar, Y. et al. Preliminary results of a phase I study of bevacizumab (BV) in combination with everolimus (E) in patients with advanced solid tumors [abstract]. ASCO Meeting Abstracts 24, 3097 (2006).

    Google Scholar 

  93. Saltz, L. B. et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J. Clin. Oncol. 26, 2013–2019 (2008).

    CAS  PubMed  Google Scholar 

  94. Miles, D. et al. Randomized, double-blind, placebo-controlled, phase III study of bevacizumab with docetaxel or docetaxel with placebo as first-line therapy for patients with locally recurrent or metastatic breast cancer (mBC): AVADO [abstract]. ASCO Meeting Abstracts 26, LBA1011 (2008).

    Google Scholar 

  95. Manegold, C. et al. Randomised, double-blind multicentre phase III study of bevacizumab in combination with cisplatin and gemcitabine in chemotherapy-naive patients with advanced or recurrent non-squamous non-small cell lung cancer (NSCLC): BO17704 [abstract]. ASCO Meeting Abstracts 25, LBA7514 (2007).

    Google Scholar 

  96. Sridhar, S. S. et al. Activity of cediranib (AZD2171) in patients (pts) with previously untreated metastatic renal cell cancer (RCC). A phase II trial of the PMH Consortium [abstract]. ASCO Meeting Abstracts 26, 5047 (2008).

    Google Scholar 

  97. Hutson, T. E. et al. Biomarker analysis and final efficacy and safety results of a phase II renal cell carcinoma trial with pazopanib (GW786034), a multi-kinase angiogenesis inhibitor [abstract]. ASCO Meeting Abstracts 26, 5046 (2008).

    Google Scholar 

  98. Grothey, A. et al. Bevacizumab beyond first progression is associated with prolonged overall survival in metastatic colorectal cancer: results from a large observational cohort study (BRiTE). J. Clin. Oncol. 26, 5326–5334 (2008).

    CAS  PubMed  Google Scholar 

  99. Garcia, A. A. et al. Phase II clinical trial of bevacizumab and low-dose metronomic oral cyclophosphamide in recurrent ovarian cancer: a trial of the California, Chicago, and Princess Margaret Hospital phase II consortia. J. Clin. Oncol. 26, 76–82 (2008).

    CAS  PubMed  Google Scholar 

  100. Wright, J. D. et al. Bevacizumab combination therapy in recurrent, platinum-refractory, epithelial ovarian carcinoma: a retrospective analysis. Cancer 107, 83–89 (2006).

    CAS  PubMed  Google Scholar 

  101. Agarwala, S. S. et al. Randomized phase III study of paclitaxel plus carboplatin with or without sorafenib as second-line treatment in patients with advanced melanoma [abstract]. ASCO Meeting Abstracts 25, 8510 (2007).

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Drs. H. Streicher and S. P. Ivy for critical review and comments, and Mr. C. Risch for assistance in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen X. Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Cleck, J. Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol 6, 465–477 (2009). https://doi.org/10.1038/nrclinonc.2009.94

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2009.94

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing