Discussion
In the management of patients with CAP at the ED, it is often difficult for the physician to determine which patients may safely be selected for outpatient treatment and which patients would benefit from hospital admission. If the patient can be safely treated as an outpatient, costs are reduced and the risk of nosocomial infections eliminated. Most patients also prefer outpatient treatment and are able to resume normal activity sooner than those hospitalised.21 A well-functioning severity scoring system can facilitate the site of care decision about this.
Developed and advocated in North America, the PSI7 is still the most thoroughly evaluated index for identifying patients with low-risk CAP suitable for outpatient management.7 ,22–24 As the PSI is cumbersome to use with 20 parameters with different weights, the less complicated CURB-65 is recommended in the latest guidelines from the Infectious Diseases Society of America and the American Thoracic Society.24 However, CURB-65 cannot be used without laboratory resources—a blood sample has to be taken and the result of serum urea analysis awaited before a definitive assessment can be made and a decision taken. The further simplified CRB-65 can be used without laboratory resources and was originally advocated for use in the outpatient setting. There is a lack of randomised studies where CRB-65 has been tested regarding its possibility to avoid unnecessary hospital admission. Moreover, it is unknown how far CRB-65 is actually implemented and used in the outpatient setting. However, it has been shown that CRB-65 can be used in outpatients to assess CAP severity and risk of death.25 CRB-65 has been studied in more than 6000 patients, representing a mix of patients seen in the community and in hospitals and, based on these studies, is widely recommended for use in EDs.10 In two meta-analyses of the ability of different severity indices to predict death from pneumonia, CRB-65 proved to be equivalent to the more complex PSI and CURB-65.26 ,27
When deciding the appropriate site of care in patients with suspected CAP, the Swedish Society of Infectious Diseases recommends the use of CRB-65 for patients with CAP seen in hospital EDs, since it has the advantage of not requiring venous blood samples.28 The British Thoracic Society recommends that general practitioners use the CRB-65 score in primary care when deciding whether hospitalisation of a patient with CAP is warranted.29
In the developing process of the PSI, underlying diseases and poor oxygenation—information easily obtained in the ED—were independently associated with mortality.30 The importance of underlying diseases for prognosis is supported by several recent studies12 ,19 ,31–33 and may partly be reflected in the independent prognostic importance of high serum urea and low serum albumin.9 ,33–35
In 1988, Neff called pulse oximetry ‘the fifth vital sign’.36 Bewick et al revealed in their study that SpO2≤90%, as a single parameter, was found in a significant proportion (28%) of patients admitted with CAP, while retaining a specificity of 76% for 30-day mortality or critical care admission,37 and Buising et al observed in univariate as well as in multivariate statistical analyses that SpO2 could successfully replace the ‘U’ (urea) in the CURB scoring system when assessing patients with CAP in the ED.38 Poor oxygenation has also in other reports, including the recently proposed scoring systems A-DROP,11 SMART-COP12 and SCAP,13 been identified as an independent prognostic factor.11 ,39
In the present study, we aimed to investigate the accuracy in predicting 30-day mortality of our proposed modified CRB-65 scoring system, DS CRB-65,19 in consecutive patients with CAP of different aetiology assessed in a Swedish teaching hospital ED. In our previous study19 DS CRB-65 performed significantly better than CRB-65 in an international cohort of patients with bacteraemic pneumococcal CAP. Among these patients, the presence of underlying disease in accordance with the PSI7 (malignancy, heart failure, cerebrovascular, renal and liver disease) as well as SpO2 <90% or PaO2 <8 kPa was independently associated with 30-day mortality. We simplified the calculation of DS CRB-65 by letting the existence of one or more of the five diseases (D) increase the score sum by one point and the presence of a low SpO2 or a low PaO2 (S) also by one point. For the present calculation of ‘S’ in DS CRB-65, no blood tests or arterial blood gases were taken, and hence only SpO2 was measured.
In the group of patients studied, the accuracy was satisfactory with both CRB-65 (score 0) and DS CRB-65 (score 0–1), since only one and two deaths, respectively (of a total of 80 deaths), were recorded among patients classified as at low risk. However, the comparison of ROC curve AUCs for the end point 30-day mortality revealed a significant difference between CRB-65 and DS CRB-65. Moreover, with CRB-65, only 32% were classified as at low risk, while with DS CRB-65, 51% were identified as at low risk, still with low mortality among patients so classified (0.3%). Thus, when compared to CRB-65, DS CRB-65 may represent an improved tool in the initial assessment of patients with CAP, while keeping its independence of laboratory tests. Based on our findings, we concluded that patients with score 0–1 are probably suitable for home treatment in most cases. In patients with a score of 2, a short stay in hospital or other supervised treatment as outpatients may be considered. A score≥3 represents cases of severe pneumonia and inpatient treatment should be the rule.
Some limitations to our study should be acknowledged. The study was retrospective and all patients were recruited from one hospital. In 144 patients (42% of all patients who visited the ED without being admitted), chest radiography or chest CT was not performed, and two of these patients died. Yet this had no statistically significant impact on the study results when the 1028 patients, all radiologically examined, were analysed separately (ROC curves AUCs and 95% CIs for CRB-65 and DS CRB-65 were 0.81, 0.76 to 0.84 and 0.86, 0.82 to 0.89, respectively, p<0.0001 for the difference). Seven patients with HIV and CAP were included, as well as one with unknown HIV status who turned out to be HIV positive and infected with Pneumocystis jirovecii. This eighth patient with HIV was initially assessed as suffering from CAP. All patients with HIV survived 30 days. Excluding these eight HIV patients from the ROC curve analysis revealed no statistically significant impact on the study results (ROC curves AUCs and 95% CIs for CRB-65 and DS CRB-65 were 0.82, 0.77 to 0.85 and 0.87, 0.83 to 0.90, respectively, p<0.0001 for the difference).
In conclusion, this study indicates that in patients with CAP, adding data on the existence of some specified underlying disease and the presence of hypoxaemia to the simple CRB-65 prognostic score will improve its accuracy in predicting 30-day mortality, while retaining independence of laboratory tests. The improved score can easily be used in the ED, as well as outside hospitals in order to facilitate the decision whether a patient with suspected CAP should be admitted to hospital or not. New studies or reanalysis of data from previous studies from different settings and geographical areas may be needed to further evaluate and determine the role of DS CRB-65 as a scoring system for early risk assessment of patients with CAP.