Article Text
Abstract
Introduction The influence of a person’s immediate surroundings and physical environment (such as bed and bedroom condition) on sleep has gained interest.1–19 This study aimed at identifying a standard methodology or guideline to assess the thermal comfort of sleeping people in bedrooms. The literature suggests there are various methods, approaches, tools, and metric to measure and quantify sleep quality and thermal comfort in isolation.8,10,27–29,11,20–26 But there’s no standard method which takes an approach to study these both, emphasizing the lack of a standardized methodology to conduct field trials in real bedrooms.
Method The method involves conducting a literature review to identify appropriate indices for measuring sleep quality and thermal comfort of sleeping people. Based on it, an approach was developed for conducting the field studies (refer figure 1 & 2). The approach was tested in a pilot study with two key activities. The first activity involves establishing baseline sleep quality using diaries and actigraphy for 10 healthy adults. Secondly, their sleep quality and comfort and the relationship with environmental parameters was assessed in a bedroom, deemed as overheated.
Results The literature review indicated lack of a standardized methodology for studying the relationship between sleep quality, thermal comfort, and bed/bedroom conditions. Studies predominantly involved healthy adults in laboratory settings. Actigraphy and smart fitness bands were used to assess sleep quality, with actigraphy showing the closest agreement with the gold standard. The study used a novel approach consisting of objective and subjective measurement, revealing that the impact by an overheated bedroom on sleep quality and thermal comfort can be studied comprehensively.
Discussion The study utilized a mixed method approach in a pilot study to assess its suitability for field studies. Further research is needed to establish a standardized methodology for studying sleep quality and comfort in real-world settings.
References
Minor K, Bjerre-Nielsen A, Jonasdottir SS, Lehmann S, Obradovich N. Rising temperatures erode human sleep globally. One Earth. 2022;5:534–49
Muzet A, Libert JP, Candas V. Ambient temperature and human sleep. Experientia. 1984;40(5):425–9
Kallawicha K, Boonvisut S, Chao HJ, Nitmetawong T. Bedroom environment and sleep quality of apartment building residents in urban Bangkok. Build Environ [Internet]. 2021;188(November 2020):107474. Available from: https://doi.org/10.1016/j.buildenv.2020.107474
Shen TY, Tan SH, Wu FG. Comparison of sleep quality and thermal comfort for innovative mattress design. Procedia Manuf [Internet]. 2015;3(Ahfe):5874–80. Available from: http://dx.doi.org/10.1016/j.promfg.2015.07.893
Gaynor D, Breseman K. Effects of temperature on sleep: manipulating body temperature to improve sleep quality, onset, and Arousal. 2013
Bischof W, Madsen TL, Clausen J, Madsen PL, Wildschidtz G, Madsen ITL, et al. Sleep and the temperature field of the bed. J Therm Biol. 1993;18(5–6):393–8
Liu Y, Song C, Zhou X, Liu J, Wang Y. Thermal requirements of the sleeping human body in bed warming conditions. Energy Build [Internet]. 2016;130:709–20. Available from: http://dx.doi.org/10.1016/j.enbuild.2016.08.089
Tsang TW, Mui KW, Wong LT. Investigation of thermal comfort in sleeping environment and its association with sleep quality. Build Environ [Internet]. 2021;187(August 2020):107406. Available from: https://doi.org/10.1016/j.buildenv.2020.107406
Lan L, Tsuzuki K, Liu YF, Lian ZW. Thermal environment and sleep quality: a review. Energy Build [Internet]. 2017;149:101–13. Available from: http://dx.doi.org/10.1016/j.enbuild.2017.05.043
Zhu ML, Ouyang Q, Shen HG, Zhu YX. Field study on the objective evaluation of sleep quality and sleeping thermal environment in summer. Energy Build [Internet]. 2016;133:843–52. Available from: http://dx.doi.org/10.1016/j.enbuild.2016.10.007
Liu Y, Song C, Wang Y, Wang D, Liu J. Experimental study and evaluation of the thermal environment for sleeping. Build Environ [Internet]. 2014;82:546–55. Available from: http://dx.doi.org/10.1016/j.buildenv.2014.09.024
Lan L, Lian Z. Ten questions concerning thermal environment and sleep quality. Build Environ [Internet]. 2016 Apr 1 [cited 2021 May 14];99:252–9. Available from: http://dx.doi.org/10.1016/j.buildenv.2016.01.017
Lan L, Qian XL, Lian ZW, Lin YB. Local body cooling to improve sleep quality and thermal comfort in a hot environment. Indoor Air. 2018;28(1):135–45
Troynikov O, Watson CG, Nawaz N. Sleep environments and sleep physiology: a review. J Therm Biol. 2018;78(September):192–203
Wang Y, Liu Y, Song C, Liu J. Appropriate indoor operative temperature and bedding micro climate temperature that satisfies the requirements of sleep thermal comfort. Build Environ [Internet]. 2015;92:20–9. Available from: http://dx.doi.org/10.1016/j.buildenv.2015.04.015
Cao T, Lian Z, Ma S, Bao J. Thermal comfort and sleep quality under temperature, relative humidity and illuminance in sleep environment. J Build Eng [Internet]. 2021;43. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105331584&doi=10.1016%2Fj.jobe.2021.102575&partnerID=40&md5=4f9e15e20ef9ed9f06b35a08bbbb4b04
Lan L, Lian ZW, Lin YB. Comfortably cool bedroom environment during the initial phase of the sleeping period delays the onset of sleep in summer. Build Environ [Internet]. 2016;103:36–43. Available from: http://dx.doi.org/10.1016/j.buildenv.2016.03.030
Zhou X, Lian Z, Lan L. Experimental study on a bedside personalized ventilation system for improving sleep comfort and quality. Indoor Built Environ. 2014;23(2):313–23
Lan L, Pan L, Lian Z, Huang H, Lin Y. Experimental study on thermal comfort of sleeping people at different air temperatures. Build Environ [Internet]. 2014;73:24–31. Available from: http://dx.doi.org/10.1016/j.buildenv.2013.11.024
KJ Klingman, RC Jungquist, ML Perlis. Introducing the sleep disorders symptom checklist-25: a primary care friendly and comprehensive screener for sleep disorders. Sleep Med Res. 2017;8(1):17–25
de Zambotti M, Baker FC, Willoughby AR, Godino JG, Wing D, Patrick K, et al. Measures of sleep and cardiac functioning during sleep using a multi-sensory commercially-available wristband in adolescents. Physiol Behav [Internet]. 2016;158:143–9. Available from: http://dx.doi.org/10.1016/j.physbeh.2016.03.006
Mccall C, Mccall WV. Comparison of actigraphy with polysomnography and sleep logs in depressed insomniacs. Journal of Sleep Research. 2012;21:122–7
Marino M, Li Y, Rueschman MN, Winkelman JW, Ellenbogen JM, Solet JM, et al. Measuring sleep: accuracy, sensitivity, and specificity of wrist actigraphy compared to polysomnography. Sleep. 2013;36:1747–55
Krystal AD, Edinger JD. Measuring sleep quality. Sleep Med. 2008;9(SUPPL. 1):10–7
Kerkhof G. Holland sleep disorders questionnaire: a new sleep disorders questionnaire based on the International classification of sleep disorders-2. J Sleep Res. 2013;22:104–7
Hirshkowitz M, Whiton K, Albert SM, Alessi C, Bruni O, DonCarlos L, et al. National sleep foundation’s sleep time duration recommendations: methodology and results summary. Sleep Heal [Internet]. 2015;1(1):40–3. Available from: http://dx.doi.org/10.1016/j.sleh.2014.12.010
Bak JU, Giakoumidis N, Kim G, Dong H, Mavridis N. An intelligent sensing system for sleep motion and stage analysis. Procedia Eng [Internet]. 2012;41(Iris):1128–34. Available from: http://dx.doi.org/10.1016/j.proeng.2012.07.292
Carney CE, Buysse DJ, Ancoli-Israel S, Edinger JD, Krystal AD, Lichstein KL, et al. The consensus sleep diary: standardizing prospective sleep self-monitoring. Sleep. 2012;35:287–302
Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28:193–213
This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.