Discussion
This is the first Australian study of substantial duration which examines associations between PM10 levels and acute respiratory disease causing hospitalisation. There was a notable decline in daily PM10 concentrations over the study period, with a significant association between daily PM10 concentrations and hospital admissions for acute bronchitis and bronchiolitis. Acute asthma and exacerbations of COPD showed no relationship to PM10 concentrations. As our results were surprising, we undertook a number of checks to ensure the validity of the responses. Overdispersion is a known threat to validity in Poisson regression; this was not the case for our planned analysis, as shown by a scale factor near to unity. Several variations on the regression modelling are possible and were tested as a check on the robustness of our conclusions to the inherent assumptions. First, it is possible to impute the missing values of PM10 in slightly different ways; this did not disturb our conclusions. Second, we used a year effect to adjust for long-term trends in risk and treatment, as well as for the discussed public health interventions.8 An alternative is to use a linear term for the long-term trend, but this made no difference to the conclusions. Third, instead of using daily records as the units of analysis, one might use weekly records (retaining trend and seasonal effects, but omitting day-of-the-week effects). Again this confirmed the effect of air pollution as described above; however, some overdispersion was now evident. Fourth, one might ignore the core-model approach using the Hobart data and simply conduct a standard stepwise regression of the Launceston data. A problem which arises in this latter analysis confirms the value of our core-model methodology: in the stepwise approach, a term for air pressure cannot convincingly be eliminated on statistical grounds, although its inclusion appears far-fetched. The explanation lies in the fact that air pressure has a moderately strong positive linear relationship with PM10, presumably resulting from the known meteorological association between blocking high-pressure systems in winter, and the clear skies and temperature inversions that trap air pollution in Launceston's river valley. We take these checks to support the choice of our planned model as the best and to confirm the robustness of our conclusion.
The improvements seen in the Tamar Valley particulate levels are largely due to intensive air quality programmes being initiated in the Launceston region. These include compulsory compliance for wood-heaters with Australian Standards and highly successful community education campaigns.12 In spite of these improvements, ambient PM10 frequently exceeded the mean daily Australian standard of 50 µg/m3 even in the latter part of the decade studied.
A 10 µg/m3 relative rise in PM10 levels was shown to correspond with a 4% rise in hospital admissions for acute bronchitis and bronchiolitis in this study. Difficulties arise in comparing these results to other published studies because respiratory diseases are usually reported collectively and focus on specific age groups. However, McGowan et al5 reported similar results and found that when all age groups were combined there was a 3.37% increase in respiratory admissions (including bronchitis) for each interquartile rise in PM10 (interquartile value 14.8 µg/m3). The SAPALDIA cohort of adults also found that annual mean PM10 levels of 10–33 mg/m3 affected symptoms and lung function in chronic bronchitis.13 The precise pathophysiological mechanism for why the bronchitis/bronchiolitis group may be more susceptible remains unanswered, but it is possible that air pollution particles, which modulate airway macrophage host defences, may increase the severity of inflammatory and infectious disease in these individuals.14 In contrast, acute exacerbations of asthma and COPD showed no relationship with daily PM10. This may reflect that acute exacerbations of COPD are mainly attributable to respiratory tract infections, viral or bacterial, or to other components of air pollution, such as CO and SO2,which could not be studied with our data.15 ,16 Indeed, we found a reduction in asthma admissions over the course of the study period, which may be the result of increased inhaled corticosteroid usage, with the same trend seen in both regions, and typical of the reduction of asthma admissions documented in other states of Australia.
All meterological variables showed no association with hospital admissions; the exception being relative humidity and asthma. Even though changes in weather has been known to impact on respiratory hospitalisations,11 the lack of association between climate and hospitalisations has been reported previously where hospital admissions for respiratory disease was independent of potential confounding effects of temperature, air pressure and humidity.17 The association between asthma and humidity is difficult to assess. It is not known if it was the direct effect of humidity alone that caused acute exacerbations of asthma or whether humidity prolonged the periods of air pollution or affected the biological and chemical components of PM10 causing acute exacerbations of asthma. In a study by Prifitis et al,18 relative humidity alone were predictors of up to 56.7% of monthly hospital admissions among younger children. Relative humidity has also been shown to have the opposite effect in certain respiratory diseases. For example, Leitte et al19 found that the adverse effect of total suspended particulates (including PM10) on chronic bronchitis was reduced by higher relative humidity. High relative humidity levels in the Tamar Valley are commonly observed in the cool mornings of winter, when it is not unusual to see levels of relative humidity reaching 100%. Therefore, the association between bronchitis/bronchiolitis and PM10 in this study cannot be explained by the influence of relative humidity.
There were distinct patterns in the daily hospital admissions for each disease category over the decade. The overall drop in admissions for acute asthma may be due to improvements in treatment, although this has previously been attributed to reduced industrial pollution, improved smoking cessation rates and better medical management.20 In contrast, COPD showed an increase in hospitalisations over the decade in keeping with global trends reporting an increase in the prevalence of hospital admissions for COPD,15 ,16 perhaps reflecting the ageing Australian population. COPD hospitalisations also appear to be affected by the change from ICD9 to ICD10 coding, which has been noted in other studies.21 All our respiratory disease categories showed similar patterns of hospitalisation for seasons of the year and are consistent with other studies where a regular winter peak and summer trough is observed.22
We found a weak association between exposure to PM10 and prescribed medications. The relationship between the use of bronchodilators and elevated levels of PM10 pollution have been noted in other studies,23 ,24 especially in the paediatric population. Brunekreef et al25 reported effects on respiratory symptoms and medication at 24 h average PM10 levels not exceeding 115 µg/m3. It is feasible that the weak association seen in our study is due to use of hospital prescriptions data only which had lower weekend means and a stronger association may exist if we had access to community prescriptions data.
Limitations to this study include using only PM10 data. It was not possible to examine other fractions of ambient particulates because air quality standards only required the measurement of PM10 in Launceston during the period studied. PM2.5 or less, which is considered to be a better indicator of exposure to lower airways, has only been recently introduced into data collection practices in Australia. However, we believe PM10 has been shown to be a reliable and valid method of assessing exposure to particulate matter as studies globally use PM10 as an indicator for studying respiratory illnesses.26 PM10 also has enforceable standards and the consistent data sets can be compared easily, whereas there is no enforceable NEPM standard for PM2.5 and as a consequence, it is only measured in a limited number of sites across Australia. We also did not use personal monitors to measure exposure to PM10. Recent data suggests that independent pollutant associations with lung function might be missed using ambient data alone.27 It was not feasible to use personal monitoring in this study because of the large population group studied and the retrospective design. Likewise, it was not possible to adjust for lifestyle factors (smoking, etc) at the level of the individual, as we did not have access to individual data. An earlier pilot study of airborne particulates in Launceston performed in 1991 measured other airborne pollutants, including polycyclic aromatic hydrocarbons (PAH), ozone and lead. There were high levels of PAH which showed a close correlation with PM10 levels, including syringaldehyde, a chemical marker of hardwood combustion. This made it reasonably clear that woodsmoke was at the least a major contributor to all particulates above a background (non-woodsmoke) level of about 30 μg/m3 in winter and also was abundant relative to other air pollutants.
In conclusion, exposure to PM10 was associated with hospital admissions for acute bronchitis and bronchiolitis in a region of Australia characterised by moderate to high concentrations of woodsmoke. Our findings suggest that this is an important public health problem and that the lowering of PM10 levels may reduce hospital admissions for these diseases. Further studies, that measure all fractions of particulate matter and the broad range of toxic substances it contains, are needed to determine what causes the most numerous and serious effects on human health.