Predictive value of prebronchodilator and postbronchodilator spirometry for COPD features and outcomes ====================================================================================================== * Spyridon Fortis * Michael Eberlein * Dimitris Georgopoulos * Alejandro P Comellas ## Abstract **Introduction** We compared the predictive value of prebronchodilator and postbronchodilator spirometry for chronic obstructive pulmonary disease (COPD) features and outcomes. **Methods** We analysed COPDGene data of 10 192 subjects with smoking history. We created regressions models with the following dependent variables: clinical, functional and radiographic features, and the following independent variables: prebronchodilator airflow obstruction (PREO) and postbronchodilator airflow obstruction (POSTO), prebronchodilator and postbronchodilator FEV1% predicted. We compared the model performance using the Akaike information criterion (AIC). **Results** The COPD prevalence was higher using PREO. About 8.5% had PREO but no airflow obstruction in postbronchodilator spirometry (POSTN) (PREO-POSTN) and 3% of all subjects had no aiflow obstruction in prebronchodilator spirometry (PREN) but POSTO (PREN-POSTO). We found no difference in COPD features and outcomes between PREO-POSTN and PREN-POSTO subjects. Although, both prebronchodilator and postbronchodilator spirometries are both associated with chronic bronchitis, dyspnoea, exercise capacity and COPD radiographic findings, models that included postbronchodilator spirometric measures performed better than models with prebronchodilator measures to predict these COPD features. The predictive value of prebronchodilator and postbronchodilator spirometries for respiratory exacerbations, change in forced expiratory volume in 1 s, dyspnoea and exercise capacity during a 5-year period is relatively similar, but postbronchodilator spirometric measures are better predictors of mortality based on AIC. **Conclusions** Postbronchodilator spirometry may be a more accurate predictor of COPD features and outcomes. * Respiratory Measurement * Clinical Epidemiology * Copd Exacerbations * Emphysema * Imaging/ct Mri Etc * COPD epidemiology ### Key messages * The chronic obstructive pulmonary disease (COPD) prevalence was higher using prebronchodilator spirometry. * We found no difference in COPD features and outcomes between subjects with discordance in prebronchodilator and postbronchodilator spirometry. * Although both prebronchodilator and postbronchodilator spirometries are associated with COPD features and outcomes, postbronchodilator spirometry may be a more accurate predictor. ## Introduction Chronic obstructive pulmonary disease (COPD) diagnosis is based on a spirometric definition according to Global Initiative for Chronic Obstructive Lung Diseases guidelines.1 This diagnosis requires the presence of airflow obstruction (AFO) defined as forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) below the lower limit of normal (LLN) or 0.7.1 Several studies have compared FEV1/FVC20 min after bronchodilator administration instead of 15–20 min.22 28 Subjects older than 80 years were not included. We only have phase 2 spirometries for half of the subjects. The follow-up period may not be long enough to detect some outcome differences, especially mortality, between the AFO discordance groups. We do not have data on the specific cause of death. We did not also detect any robust outcome differences, as both prebronchodilator and postbronchodilator spirometries were associated strongly with outcomes. Postbronchodilator spirometry superiority is based on better model performance using the AIC.16 17 These limitations do not undermine the strengths of our study, which include the large sample size and the wealth of epidemiological data. In conclusion, PREO was more sensitive to diagnose AFO compared with POSTO. About half of the subjects with AFO discordance in their prebronchodilator and postbronchodilator spirometry, which compromise 11% of all subjects, progress to PREO-POSTO, which is a pattern with higher mortality compared with the other patterns. Although both prebronchodilator and postbronchodilator spirometries are associated with clinical, functional and radiographic features of COPD, and mortality, our findings suggest that postbronchodilator spirometry may be a more accurate measure of COPD burden and should be used for COPD diagnosis and classification. This raises the question of whether postbronchodilator spirometric reference values for the US population are needed. ## Acknowledgments We thank Paul Casella, MFA for editorial assistance and PatrickTen Eyck, PhD for statistical consult. ## Footnotes * Contributors All authors made substantial contributions to the study. SF participated in study conception and design, data analysis and interpretation and drafting of the manuscript. ME participated in study design, data interpretation and drafting of the manuscript. DG participated in data interpretation. AC participated in study conception and design, data interpretation and drafting of the manuscript. * Funding The project described was supported by Award Number R01 HL089897 and Award Number R01 HL089856 from the National Heart, Lung, and Blood Institute. The COPDGene project is also supported by the COPD Foundation through contributions made to an Industry Advisory Board comprised of AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Novartis, Pfizer, Siemens and Sunovion. * Competing interests None declared. * Ethics approval The institutional review boards at each participating center outlined below approved the study protocol. Details of the study protocol have been published previously.12 * Provenance and peer review Not commissioned; externally peer reviewed. * Data sharing statement Please contact COPD gene investigators for additional data request. * Collaborators COPDgene investigators * © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted. This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: [http://creativecommons.org/licenses/by-nc/4.0/](http://creativecommons.org/licenses/by-nc/4.0/) ## References 1. 1.Global initiative for chronic obstructive lung disease. Guide to copd diagnosis, management, and prevention. [http://goldcopd.org/gold-2017-global-strategy-diagnosis-management-prevention-copd/](http://goldcopd.org/gold-2017-global-strategy-diagnosis-management-prevention-copd/) 2. 2. Vaz Fragoso CA , Concato J , McAvay G , et al . Chronic obstructive pulmonary disease in older persons: A comparison of two spirometric definitions. Respir Med 2010;104:1189–96.[doi:10.1016/j.rmed.2009.10.030](http://dx.doi.org/10.1016/j.rmed.2009.10.030) [CrossRef](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=10.1016/j.rmed.2009.10.030&link_type=DOI) [PubMed](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=20199857&link_type=MED&atom=%2Fbmjresp%2F4%2F1%2Fe000213.atom) 3. 3. Mannino DM , Diaz-Guzman E . Interpreting lung function data using 80% predicted and fixed thresholds identifies patients at increased risk of mortality. Chest 2012;141:73–80.[doi:10.1378/chest.11-0797](http://dx.doi.org/10.1378/chest.11-0797) [CrossRef](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=10.1378/chest.11-0797&link_type=DOI) [PubMed](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=21659434&link_type=MED&atom=%2Fbmjresp%2F4%2F1%2Fe000213.atom) [Web of Science](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=000298941800015&link_type=ISI) 4. 4. Vaz Fragoso CA , Concato J , McAvay G , et al . The ratio of FEV1 to FVC as a basis for establishing chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010;181:446–51.[doi:10.1164/rccm.200909-1366OC](http://dx.doi.org/10.1164/rccm.200909-1366OC) [CrossRef](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=10.1164/rccm.200909-1366OC&link_type=DOI) [PubMed](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=20019341&link_type=MED&atom=%2Fbmjresp%2F4%2F1%2Fe000213.atom) [Web of Science](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=000275176700006&link_type=ISI) 5. 5. Chen CZ , Ou CY , Wang WL , et al . Using post-bronchodilator FEV1is better than pre-bronchodilator FEV1 in evaluation of COPD severity. COPD 2012;9:276–80.[doi:10.3109/15412555.2012.654529](http://dx.doi.org/10.3109/15412555.2012.654529) 6. 6. Mannino DM , Diaz-Guzman E , Buist S . Pre- and post-bronchodilator lung function as predictors of mortality in the Lung Health Study. Respir Res 2011;12:136.[doi:10.1186/1465-9921-12-136](http://dx.doi.org/10.1186/1465-9921-12-136) [CrossRef](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=10.1186/1465-9921-12-136&link_type=DOI) [PubMed](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=21991942&link_type=MED&atom=%2Fbmjresp%2F4%2F1%2Fe000213.atom) 7. 7. Tilert T , Dillon C , Paulose-Ram R , et al . Estimating the U.S. prevalence of chronic obstructive pulmonary disease using pre- and post-bronchodilator spirometry: the National Health and Nutrition Examination Survey (NHANES) 2007-2010. Respir Res 2013;14:103.[doi:10.1186/1465-9921-14-103](http://dx.doi.org/10.1186/1465-9921-14-103) [CrossRef](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=10.1186/1465-9921-14-103&link_type=DOI) [PubMed](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=24107140&link_type=MED&atom=%2Fbmjresp%2F4%2F1%2Fe000213.atom) 8. 8. O’Donnell DE . Hyperinflation, dyspnea, and exercise intolerance in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2006;3:180–4.[doi:10.1513/pats.200508-093DO](http://dx.doi.org/10.1513/pats.200508-093DO) [CrossRef](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=10.1513/pats.200508-093DO&link_type=DOI) [PubMed](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=16565429&link_type=MED&atom=%2Fbmjresp%2F4%2F1%2Fe000213.atom) 9. 9. Pellegrino R , Viegi G , Brusasco V , et al . Interpretative strategies for lung function tests. Eur Respir J 2005;26:948–68.[doi:10.1183/09031936.05.00035205](http://dx.doi.org/10.1183/09031936.05.00035205) [FREE Full Text](http://bmjopenrespres.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiZXJqIjtzOjU6InJlc2lkIjtzOjg6IjI2LzUvOTQ4IjtzOjQ6ImF0b20iO3M6MjU6Ii9ibWpyZXNwLzQvMS9lMDAwMjEzLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 10. 10. Newton MF , O’Donnell DE , Forkert L . Response of lung volumes to inhaled salbutamol in a large population of patients with severe hyperinflation. Chest 2002;121:1042–50.[doi:10.1378/chest.121.4.1042](http://dx.doi.org/10.1378/chest.121.4.1042) [CrossRef](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=10.1378/chest.121.4.1042&link_type=DOI) [PubMed](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=11948031&link_type=MED&atom=%2Fbmjresp%2F4%2F1%2Fe000213.atom) [Web of Science](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=000175226400010&link_type=ISI) 11. 11. Fortis S . Lost in interpretation: should the highest VC value be used to calculate the FEV1/VC ratio? Int J Chron Obstruct Pulmon Dis 2016;11:2167–70.[doi:10.2147/COPD.S116214](http://dx.doi.org/10.2147/COPD.S116214) 12. 12. Regan EA , Hokanson JE , Murphy JR , et al . Genetic epidemiology of COPD (COPDGene) study design. COPD 2010;7:32–43.[doi:10.3109/15412550903499522](http://dx.doi.org/10.3109/15412550903499522) [CrossRef](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=10.3109/15412550903499522&link_type=DOI) [PubMed](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=20214461&link_type=MED&atom=%2Fbmjresp%2F4%2F1%2Fe000213.atom) [Web of Science](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=000278277100006&link_type=ISI) 13. 13. Miller MR , Hankinson J , Brusasco V , et al . Standardisation of spirometry. Eur Respir J 2005;26:319–38.[doi:10.1183/09031936.05.00034805](http://dx.doi.org/10.1183/09031936.05.00034805) [Abstract/FREE Full Text](http://bmjopenrespres.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiZXJqIjtzOjU6InJlc2lkIjtzOjg6IjI2LzIvMzE5IjtzOjQ6ImF0b20iO3M6MjU6Ii9ibWpyZXNwLzQvMS9lMDAwMjEzLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 14. 14. Hankinson JL , Odencrantz JR , Fedan KB . Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med 1999;159:179–87.[doi:10.1164/ajrccm.159.1.9712108](http://dx.doi.org/10.1164/ajrccm.159.1.9712108) [CrossRef](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=10.1164/ajrccm.159.1.9712108&link_type=DOI) [PubMed](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=9872837&link_type=MED&atom=%2Fbmjresp%2F4%2F1%2Fe000213.atom) [Web of Science](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=000077987600027&link_type=ISI) 15. 15. Wan ES , Hokanson JE , Murphy JR , et al . Clinical and radiographic predictors of gold-unclassified smokers in the COPDgene study. Am J Respir Crit Care Med 2011;184:57–63.[doi:10.1164/rccm.201101-0021OC](http://dx.doi.org/10.1164/rccm.201101-0021OC) [CrossRef](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=10.1164/rccm.201101-0021OC&link_type=DOI) [PubMed](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=21493737&link_type=MED&atom=%2Fbmjresp%2F4%2F1%2Fe000213.atom) [Web of Science](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=000292766700011&link_type=ISI) 16. 16. Burns RJ , Deschênes SS , Schmitz N . Associations between depressive symptoms and social support in adults with diabetes: Comparing directionality hypotheses with a longitudinal cohort. Ann Behav Med 2016;50:348–57.[doi:10.1007/s12160-015-9760-x](http://dx.doi.org/10.1007/s12160-015-9760-x) 17. 17. Spolverato G , Ejaz A , Kim Y , et al . Prognostic performance of different lymph node staging systems after curative intent resection for gastric adenocarcinoma. Ann Surg 2015;262:991–8.[doi:10.1097/SLA.0000000000001040](http://dx.doi.org/10.1097/SLA.0000000000001040) 18. 18. Pérez-Padilla R , Hallal PC , Vázquez-García JC , et al . Impact of bronchodilator use on the prevalence of COPD in population-based samples. COPD 2007;4:113–20.[doi:10.1080/15412550701341012](http://dx.doi.org/10.1080/15412550701341012) 19. 19. Fortis S , Corazalla EO , Kim HJ . Does normal spirometry rule out an obstructive or restrictive ventilatory defect? Respir Investig 2017;55:55–7.[doi:10.1016/j.resinv.2016.07.005](http://dx.doi.org/10.1016/j.resinv.2016.07.005) 20. 20. O’Donnell DE , Deesomchok A , Lam YM , et al . Effects of BMI on static lung volumes in patients with airway obstruction. Chest 2011;140:461–8.[doi:10.1378/chest.10-2582](http://dx.doi.org/10.1378/chest.10-2582) [CrossRef](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=10.1378/chest.10-2582&link_type=DOI) [PubMed](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=21310838&link_type=MED&atom=%2Fbmjresp%2F4%2F1%2Fe000213.atom) [Web of Science](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=000293994100032&link_type=ISI) 21. 21. Foglio K , Carone M , Pagani M , et al . Physiological and symptom determinants of exercise performance in patients with chronic airway obstruction. Respir Med 2000;94:256–63.[doi:10.1053/rmed.1999.0734](http://dx.doi.org/10.1053/rmed.1999.0734) [CrossRef](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=10.1053/rmed.1999.0734&link_type=DOI) [PubMed](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=10783937&link_type=MED&atom=%2Fbmjresp%2F4%2F1%2Fe000213.atom) [Web of Science](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=000086505700011&link_type=ISI) 22. 22. Calverley PM , Albert P , Walker PP . Bronchodilator reversibility in chronic obstructive pulmonary disease: use and limitations. Lancet Respir Med 2013;1:564–73.[doi:10.1016/S2213-2600(13)70086-9](http://dx.doi.org/10.1016/S2213-2600(13)70086-9) [CrossRef](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=10.1016/S2213-2600(13)70086-9&link_type=DOI) [PubMed](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=24461617&link_type=MED&atom=%2Fbmjresp%2F4%2F1%2Fe000213.atom) 23. 23. Scanlon PD , Connett JE , Waller LA , et al . Smoking cessation and lung function in mild-to-moderate chronic obstructive pulmonary disease. The Lung Health Study. Am J Respir Crit Care Med 2000;161:381–90.[doi:10.1164/ajrccm.161.2.9901044](http://dx.doi.org/10.1164/ajrccm.161.2.9901044) [CrossRef](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=10.1164/ajrccm.161.2.9901044&link_type=DOI) [PubMed](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=10673175&link_type=MED&atom=%2Fbmjresp%2F4%2F1%2Fe000213.atom) [Web of Science](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=000085376000011&link_type=ISI) 24. 24. Vestbo J , Edwards LD , Scanlon PD , et al . Changes in forced expiratory volume in 1 second over time in COPD. N Engl J Med 2011;365:1184–92.[doi:10.1056/NEJMoa1105482](http://dx.doi.org/10.1056/NEJMoa1105482) [CrossRef](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=10.1056/NEJMoa1105482&link_type=DOI) [PubMed](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=21991892&link_type=MED&atom=%2Fbmjresp%2F4%2F1%2Fe000213.atom) [Web of Science](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=000295318400006&link_type=ISI) 25. 25. Albert P , Agusti A , Edwards L , et al . Bronchodilator responsiveness as a phenotypic characteristic of established chronic obstructive pulmonary disease. Thorax 2012;67:701–8.[doi:10.1136/thoraxjnl-2011-201458](http://dx.doi.org/10.1136/thoraxjnl-2011-201458) [Abstract/FREE Full Text](http://bmjopenrespres.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToidGhvcmF4am5sIjtzOjU6InJlc2lkIjtzOjg6IjY3LzgvNzAxIjtzOjQ6ImF0b20iO3M6MjU6Ii9ibWpyZXNwLzQvMS9lMDAwMjEzLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 26. 26. Johannessen A , Lehmann S , Omenaas ER , et al . Post-bronchodilator spirometry reference values in adults and implications for disease management. Am J Respir Crit Care Med 2006;173:1316–25.[doi:10.1164/rccm.200601-023OC](http://dx.doi.org/10.1164/rccm.200601-023OC) [CrossRef](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=10.1164/rccm.200601-023OC&link_type=DOI) [PubMed](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=16556696&link_type=MED&atom=%2Fbmjresp%2F4%2F1%2Fe000213.atom) [Web of Science](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=000238208100005&link_type=ISI) 27. 27. Pérez-Padilla R , Torre Bouscoulet L , Vázquez-García JC , et al . Spirometry reference values after inhalation of 200 microg of salbutamol. Arch Bronconeumol 2007;43:530–4.[doi:10.1016/S1579-2129(07)60123-2](http://dx.doi.org/10.1016/S1579-2129(07)60123-2) [PubMed](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=17939906&link_type=MED&atom=%2Fbmjresp%2F4%2F1%2Fe000213.atom) 28. 28. Campbell S . For COPD a combination of ipratropium bromide and albuterol sulfate is more effective than albuterol base. Arch Intern Med 1999;159:156–60.[doi:10.1001/archinte.159.2.156](http://dx.doi.org/10.1001/archinte.159.2.156) [CrossRef](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=10.1001/archinte.159.2.156&link_type=DOI) [PubMed](http://bmjopenrespres.bmj.com/lookup/external-ref?access_num=9927098&link_type=MED&atom=%2Fbmjresp%2F4%2F1%2Fe000213.atom)