Skip to main content
Log In
More
Log in via Institution
Log in via OpenAthens
Log in using your username and password
For personal accounts OR managers of institutional accounts
Username
*
Password
*
Forgot your log in details?
Register a new account?
Forgot
your user name or password?
Basket
Search
More
Search for this keyword
Advanced search
Latest Content
Archive
Authors
About
Search for this keyword
Advanced search
Close
More
Main menu
Latest Content
Archive
Authors
About
Log in
More
Log in via Institution
Log in via OpenAthens
Log in using your username and password
For personal accounts OR managers of institutional accounts
Username
*
Password
*
Forgot your log in details?
Register a new account?
Forgot
your user name or password?
BMJ Journals
You are here
Home
Archive
Volume 4, Issue 1
Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial
Email alerts
Article metrics
Article menu
Article
Text
Article
info
Citation
Tools
Share
Rapid Responses
Article
metrics
Alerts
PDF
XML
Critical care
Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial
Online download statistics by month:
Online download statistics by month: November 2017 to September 2024
Abstract
Full
Pdf
Nov 2017
488
483
87
Dec 2017
289
289
67
Jan 2018
385
386
65
Feb 2018
279
268
64
Mar 2018
289
283
107
Apr 2018
339
340
124
May 2018
292
294
62
Jun 2018
326
326
73
Jul 2018
350
350
69
Aug 2018
397
397
80
Sep 2018
377
378
77
Oct 2018
456
456
99
Nov 2018
397
397
104
Dec 2018
300
300
97
Jan 2019
359
359
101
Feb 2019
529
567
115
Mar 2019
634
678
115
Apr 2019
657
698
114
May 2019
527
570
104
Jun 2019
411
413
119
Jul 2019
473
473
91
Aug 2019
376
376
71
Sep 2019
405
404
82
Oct 2019
408
405
96
Nov 2019
396
395
80
Dec 2019
389
387
78
Jan 2020
587
587
101
Feb 2020
576
572
94
Mar 2020
781
780
78
Apr 2020
525
525
73
May 2020
387
387
131
Jun 2020
456
456
81
Jul 2020
422
420
63
Aug 2020
506
497
60
Sep 2020
486
472
93
Oct 2020
391
387
103
Nov 2020
461
457
114
Dec 2020
309
308
65
Jan 2021
386
386
90
Feb 2021
328
328
76
Mar 2021
380
380
92
Apr 2021
336
336
102
May 2021
305
306
78
Jun 2021
205
210
65
Jul 2021
217
217
47
Aug 2021
203
205
79
Sep 2021
205
205
72
Oct 2021
296
296
144
Nov 2021
258
258
113
Dec 2021
225
232
74
Jan 2022
213
221
62
Feb 2022
182
152
57
Mar 2022
259
201
85
Apr 2022
244
199
61
May 2022
219
176
61
Jun 2022
276
242
56
Jul 2022
291
231
43
Aug 2022
297
263
62
Sep 2022
457
409
63
Oct 2022
217
156
71
Nov 2022
255
218
49
Dec 2022
315
270
44
Jan 2023
297
228
72
Feb 2023
315
290
60
Mar 2023
310
254
62
Apr 2023
208
153
52
May 2023
197
166
51
Jun 2023
241
201
48
Jul 2023
301
277
37
Aug 2023
261
224
48
Sep 2023
265
225
46
Oct 2023
305
249
86
Nov 2023
241
190
61
Dec 2023
295
232
49
Jan 2024
294
209
58
Feb 2024
211
174
47
Mar 2024
240
195
79
Apr 2024
261
197
68
May 2024
285
207
80
Jun 2024
734
689
74
Jul 2024
281
246
57
Aug 2024
213
177
54
Sep 2024
277
233
72
Total
29016
27633
6404
Read the full text or download the PDF:
Subscribe
Log in
Log in via Institution
Log in via OpenAthens
Log in using your username and password
For personal accounts OR managers of institutional accounts
Username
*
Password
*
Forgot your log in details?
Register a new account?
Forgot
your user name or password?