Discussion
Our results demonstrate that close proximity between spine and airway results in significant airway narrowing. Distal to the RMB, loss of kyphosis was a strong predictor of airway stenosis. The BI was reduced by 45% and 23% in HypoS and NormS, respectively, but not significantly affected in HyperS. Patients with HypoS had on average a 42%, 62% and 66% reduction of in RB4+5, RB6 and RLL7, respectively. Interestingly, was significantly narrowed in all scoliotic groups when compared with controls; this is likely to be due to the posterior trajectory of RB6, which places it in close proximity to the laterally displaced spine. Previous reports have shown that bronchial compression occurs on the convex side of a right thoracic scoliosis, causing ventilation defects in the middle and/or right lower lobe. Slit-like anteroposterior (AP) compression of the BI has been described on bronchoscopy.15 24 25
The trajectory of the BI and RLL7 showed a more horizontal trajectory with decreasing kyphosis. We hypothesise that the anterior protrusion of the spine produces a rightward deflection of the trajectory of BI and RLL7. Furthermore, the right hemithorax is rotated posteriorly wrapping the airway around the spine. Anteriorly, the right pulmonary artery or interlobar artery crosses anterior to the BI, and it seems plausible that the vessel has a causative role in the airway impingement (figure 4).26
Figure 4Subject with hypokyphosis with T1–T10 (bone), airway lumen (green) and pulmonary artery (blue) displayed from the (A) sagittal and (C) coronal perspectives. BI, bronchus intermedius; RPA, right pulmonary artery.
Winter et al
27 reported decreased vital capacities due to reduced AP diameters of the chest in patients with HypoS. Our results demonstrated that hypokyphosis correlated negatively with FVC/FVCpred, FEV1/FEV1pred and FEV1/FVC. In 1970, Bjure et al already indicated that airway closure was an aetiological factor of lung function impairment in patients with severe scoliosis.28 Dubousset et al reported direct airway compression by the scoliosis. They described the Spinal Penetration Index (SPI), which is a transverse plane measurement obtained by CT to quantify the spinal intrusion into the thorax.29 High SPI measured with biplanar stereoradiographic reconstruction has shown to correlate with the presence of obstructive lung disease.30 It is likely that different pathophysiological mechanisms result in the loss of lung function in patients with scoliosis. Disturbed chest mechanics and reduced lung volumes lead to a restrictive lung defect, while airway narrowing increases airway resistance, particularly in patients with severe scoliosis and decreased thoracic kyphosis, causing a mixed ventilatory defect. Based on the results, spirometric evaluation of patients with scoliosis and reduced thoracic kyphosis is recommended. Patients with reduced FEV1/FVC ratios or FVC <65% predicted are likely to suffer significant pulmonary morbidity and should undergo further diagnostic workup.11 Flow volume patterns are frequently normal in patients with bronchomalacia.25 31 Air trapping reflected in an increased ratio of residual lung volume to total lung capacity and increased airway resistance can indicate airway narrowing with expanded pulmonary function testing by body plethysmography.23 32
Bronchial obstruction leads to physiological disturbance based on location, degree of narrowing and the history of the stenosis. Our morphological analysis has shown that with increased hypokyphosis, airway narrowing begins more proximal at the BI, affecting airflow into the right middle and lower lobes which contribute 9% and 25% respectively to total lung volume.31 Several mechanisms can exacerbate the stenosis of the airway. Increased intrapleural pressure during expiration narrows the airway, increasing resistance and decreasing flow. Bernoulli’s principle states that increased velocity through the narrowed airway occurs simultaneously with a decrease in airway pressure. The more stenotic the airway and the more forceful the expiration, the more likely the airway will obstruct.33 Early recognition of airway stenosis is important before obstruction becomes chronic, causing atelectasis and recurrent infection with irreversible loss of lung function.16 34
Location and characterisation of the narrowing are paramount to plan surgical correction of the scoliosis and decompress the obstructed airway. There is no agreement on the diagnostic workup for extrinsic compression of the airway by scoliosis. Bronchoscopy with forced expiratory manoeuvres is the current ‘gold standard’ for the diagnosis of bronchomalacia of the trachea and main stem bronchi.33 Bronchoscopy is performed under sedation and requires the patient to inhale and forcibly exhale when instructed. Due to the invasive nature and risk of complications, it may not be appropriate to perform bronchoscopic examinations in the immediate period prior to scoliosis correction, particularly in patients with impaired respiratory function.
CT scanning allows objective delineation of the location, extent and adjacent relationships of anatomical structures, including spine and vasculature causing extrinsic airway compression. CT allows simultaneous evaluation of lung and spine for surgical planning of the scoliosis correction.35 Low-dose dynamic CT including end-inspiratory and dynamic-expiratory imaging has shown a high level of concordance with bronchoscopy in the diagnosis of tracheobronchomalacia.36 There is potential for high radiation doses with CT; thus, adherence to paediatric guidelines to produce diagnostic images without excessive radiation exposure is mandatory.37 Dynamic volumetric CT technique has demonstrated the ability to obtain diagnostic images at low radiation dose and much less than previous paired inspiratory and expiratory CT techniques.38
Ventilation/perfusion scanning is not used routinely in the assessment of patients with scoliosis but can provide a regional functional assessment in patients with significant respiratory symptoms. Krypton-81m as a ventilation agent with its ability to assess tidal breathing has been used to assess the posture-dependent right bronchial obstruction in patients with scoliosis.39
In the future, hyperpolarised helium-3 MRI may provide accurate airway lumen measurement and dynamic imaging with regional lung function assessment without the use of ionising radiation. It is likely that these techniques will lead to a better understanding of the pathophysiology of respiratory disease in scoliosis, translating to improved care and specific scoliosis correction techniques.
Study limitations
There are several weaknesses to this study. The CT scans analysed in this study were performed as preoperative planning scans prior to correction of the scoliosis via spinal instrumentation and were not controlled with respect to respiratory phase. Thus, end-expiration lumen reductions were not captured. Second, the scans were performed on larger deformities with abnormal sagittal profiles and as such represent a more severe sample of patients with idiopathic scoliosis. Idiopathic hyperkyphosis is rare and consequently our sample size is relatively small. Third, the scans were obtained in the supine position, changing the coronal and sagittal alignment of the spine. Posture-dependent lung function changes have been demonstrated in patients with scoliosis. It is possible that the supine position further decreases thoracic kyphosis, producing additional narrowing of the airways.39 40