Introduction
In 2015, 5.9 million children died before the age of 5 years with approximately 50% of these deaths occurring in sub-Saharan Africa (SSA).1 Very severe pneumonia (VSPNA) based on the WHO classification remains a leading cause of child mortality.1 Although there has been a considerable decline in mortality in hospitalised Malawian children between 2000 and 2012, mortality remained high in 2012 in critical subgroups including those with VSPNA (12%), severe undernutrition (15%) and severe acute malnutrition (35%).2 Despite the introduction of Haemophilus influenzae B and pneumococcal conjugate vaccines, severe respiratory infections (bacterial and viral) are likely to remain a major cause of morbidity and mortality in SSA. Paediatric emergency and critical care, adapted to available resources, is therefore essential in order to achieve further reductions in child mortality. Improvements of non-invasive respiratory support can play an important role in this context.
Respiratory failure is also a common feature of critically ill children with severe sepsis.3 Severe infections can lead to a complex systemic inflammatory response, and a variety of conditions such as pneumonia, bacteraemia and malaria can coexist.4 5 Without early, efficient management, these infections can progress to significant organ dysfunction, including acute respiratory distress syndrome and respiratory failure.3 Respiratory support is therefore an essential element in the management of critically ill, septic children.6–8
Improved paediatric emergency care in health facilities and streamlined referral pathways can have a significant impact on child survival. Improvement of oxygen delivery and respiratory support plays an important role in this context. A recent study conducted in Malawi showed that the use of pulse oximetry in peripheral outpatient health facilities and village clinics can help clinicians and community health workers to identify children with severe pneumonia and hypoxaemia.9 A study in Papua New Guinea demonstrated that the reliable supply of low flow oxygen can reduce mortality among children with signs of severe pneumonia.10 Oxygen concentrators in conjunction with reliable electricity systems associated with ‘uninterruptable power supply' are cost-effective and provide a reliable method of oxygen supply in low-resource settings.11 12 Installation and maintenance of these ‘oxygen systems’, however, remain a challenge in many health facilities in African countries.13 The combination of solar-powered energy systems and the use of oxygen concentrators can be an option to improve oxygen supply in health facilities in remote settings.14
Non-invasive respiratory support has the potential to improve the outcome of critically ill children managed in low-resource settings, and notably, the role of non-invasive ventilatory (NIV) support in the management of septic children with ‘less severe Acute Respiratory Distress Syndrome (ARDS)’ is also under evaluation in high-resource settings.15
Different forms of NIV exist: continuous positive airway pressure (CPAP), high-flow of warmed and humidified air/oxygen via nasal cannula, bilevel positive airway pressure and neuronally adjusted ventilatory assist.16 17
CPAP has been used efficiently for the treatment of children with respiratory dysfunction in high-resource settings (eg, viral bronchiolitis).18–20 It has been shown that bubble CPAP (bCPAP) administered through nasal prongs offers a good quality, relatively low-cost alternative to ventilator-delivered CPAP on neonatal units.21 Feasibility and safety of bCPAP use on neonatal units in middle-income and low-income countries have also been evaluated.22
A recent randomised controlled trial (RCT) conducted in Bangladesh showed that children with VSPNA treated with bCPAP had a significantly lower mortality rate (4%) compared with a group treated with low-flow O2 (15%).23 A further study conducted in Ghana demonstrated that CPAP can be used efficiently in the management of children with respiratory distress in SSA.24
A smaller study described the use of an improvised bCPAP set-up (mostly non-humidified flow) on an extremely busy paediatric unit in Malawi for children (29 days to 59 months) with VSPNA and children presenting with signs of respiratory dysfunction in the context of critical illness (eg, severe malaria) including shock and severe anaemia.25 Several months later, the authors had the opportunity to introduce a better adapted bCPAP set-up in the same clinical environment. Its use with a larger and better-described cohort, and its success or failure dependent on patient risk characteristics and their association with death while on bCPAP, is reported here.