Discussion
In this randomised trial, we aimed to investigate whether early first-line BAE had beneficial effects compared with medical therapy alone in the management of non-severe acute haemoptysis of mild abundance related to a systemic bronchial artery hypervascularisation. As compared with the medical strategy alone, the addition of early BAE achieved a higher efficacy in bleeding control at 1 and 3 months, but was associated with a higher rate of in-hospital complications.
The most difficult issues in the initial management of haemoptysis is to assess its severity and estimate the risk of bleeding recurrence, which condition the therapeutic decision and the time to its implementation. Life-threatening haemoptysis associated with high bleeding amounts, acute respiratory failure requiring mechanical ventilation or shock, which involve 10% of the patients with haemoptysis, mandate prompt management in an intensive care setting.1 2 In this context, the therapeutic management include the administration of inhaled or systemic vasoconstrictors or antifibrinolytic drugs, and the use of bronchoscopy-guided tamponade by flexible or rigid bronchoscope.7 19 The place of emergency surgery has gradually decreased because of high operative mortality rates,11 12 whereas interventional radiology has emerged worldwide as the most effective non-surgical first-line treatment, despite the lack of strong evidence from randomised trials. BAE results in immediate bleeding control in most of these severe cases with a satisfactory risk:benefit ratio.2 4 11 12 18
On the other hand, most patients presenting with mild-to-moderate haemoptysis are in the ‘grey zone’ of severity, considering the lack of usual severity criteria (bleeding amount or need for mechanical ventilation or vasopressors), although they unpredictably may progress to acute respiratory failure and ultimately die from massive bleeding recurrence.2 4 As a consequence, the most appropriate management of these patients at intermediate risk is still a matter of debate and the literature is scarce on this topic.3 4 In this study, which is to our knowledge the first randomised trial performed on the management of haemoptysis of mild severity, we focused on that latter population of patients by selecting those having haemoptysis of mild abundance (ie, bleeding amount ranging from 100 to 200 mL) on admission, not associated with acute respiratory failure or shock, and in whom the mechanism of bleeding involved the systemic bronchial artery vasculature. The main aetiologies were chronic inflammatory lung diseases and infectious illnesses, after excluding mycetomas. In this selected population, the use of BAE achieved a 33% absolute reduction of bleeding recurrence rate at 30 days, as compared with the medical strategy (11.8% vs 44.7%). These findings are consistent with a previous observational study from our group,4 which indicated a 11% recurrence rate at 1 month in the subset of patients admitted to the ICU and receiving a BAE for haemoptysis of mild abundance not related to mycetoma or pulmonary arterial vasculature involvement, as compared with a 26% rate with medical management alone.
The superior efficacy of the interventional strategy on bleeding control was sustained at 90 days, with a 91.2% bleeding recurrence-free survival rate compared with 60.2% with the medical strategy. This rate is in the higher range of those reported in uncontrolled series of severe haemoptysis treated with BAE.4 18 20 21 Bleeding recurrences mostly occur in lung cancer, mycetoma or cavitary lesions, and may be related to incomplete embolisation, recanalisation of previously embolised arteries, as well as to the recruitment of new collaterals due to the progression of the underlying disease.4 18 In the present study, lung cancer accounted for only 5.6% of all etiologies. This low rate may be explained by our selection criteria that targeted non-severe acute haemoptysis of mild abundance related to a systemic arterial mechanism. Haemoptysis related to lung cancer usually involve high bleeding amounts, high rate of acute respiratory failure and shock, as well as high rate of pulmonary arterial vasculature involvement.2 4 11 22 Altogether, the spectrum of the aetiologies of haemoptysis in the present study was similar to that recently described in two large European series of haemoptysis of mild severity, including bronchiectasis, pneumonia/lung abscess, acute tuberculosis and post-tuberculosis sequels, and differed from that of haemoptysis of large abundance or associated with other severity criteria.1 2 4 21–24 Cryptogenic haemoptysis also accounted for a large part of our population, and BAE has been shown to provide immediate control of bleeding in most of these cases, with few recurrences at both short and long terms.16 25 26
The overall rate of in-hospital complications related to the randomised strategy was 5.6%. All were reported in patients receiving BAE, including three minor complications and one major complication, all of which had favourable outcomes. These findings are in accordance with other series of the literature4 9 18 27: BAE should be performed by experienced personnel after a rigorous and multidisciplinary evaluation of the benefit:risk ratio. Guiding the procedure with imaging, specifically MDCTA, and the use of modern ionic contrast media and superselective catheterisation of bronchial arteries are essential to decrease the rate of complications related to the procedure.9 18 28–30 There were no complications related to the medical measures, particularly intravenous terlipressin. A recent Israeli study suggested that inhaled tranexamic acid may be helpful for controlling haemoptysis of low abundance.19 Its place in the treatment of moderate-to-severe abundance haemoptysis should be investigated.
Limitations of this study are related to the following: first, the achieved sample size matched to less than half of the expected sample. This discrepancy is in large part due to the fact that the targeted population was representative of less than 20% of the patients screened in the participating units, as most these patients had criteria favouring a first-line interventional radiology. However, to assess the applicability of a first-line interventional strategy outside of the intensive care environment was considered unrealistic. Despite the low recruitment rate, the effect size recorded in this trial, including the consistent results at 30-day and 3-month follow-up, strongly supports the efficacy of the interventional strategy tested. Second, the medical interventions were non-standardised to match routine practice in each centre, which may have favoured the interventional arm, but the use of these different interventions did not differ between groups. Last, due to the relatively small sample size and numbers of events, the trial lacks the power to confidently assess the risk:benefit ratio of BAE in patients with non-severe acute haemoptysis of mild abundance involving the systemic bronchial artery vasculature.
To summarise, BAE added to medical treatment reduced the risk of recurrent bleeding at 30 and 90 days in patients with non-severe acute haemoptysis of mild abundance involving the systemic bronchial artery vasculature, as compared with medical measures alone. In such a selected population presenting with haemoptysis revealing or complicating the course of bronchiectasis, pneumonia/lung abscess, acute tuberculosis and post-tuberculosis sequels, and cryptogenic haemoptysis, the indication of interventional radiology should be weighed with the estimate of the risk associated with the procedure, the risk estimate of bleeding recurrence and information from thoracic imaging.