Discussion
This study shows that CPAP masks maintain their properties and functionality well in use, and the currently recommended mask renewal intervals could, at the very least, be doubled. To our knowledge, there are no studies on mask endurance in real life, or on optimal mask renewal intervals. The mask manufacturers do not readily provide information on mask resistance to wear and tear.
We found that the therapeutic indicator (CPAP-AHI) remained normal and virtually unchanged for at least 2.5 years and unintentional leak for at least 2 years when nasal masks or nasal pillows were used. Differences between nasal masks and pillows were modest and clinically insignificant, as seen in other studies published recently.14 23 Oronasal masks, conversely, had highest mean leak and CPAP-AHI, in concordance with previous studies.14 24 25 The increase in leak became visible after 18 months, and patients used them less compared with other mask types. Patient adherence is a widely recognised problem in CPAP therapy, especially with oronasal masks.15 Oronasal masks also require higher CPAP pressures, leading to higher unintentional leaks.25 The proportion of men in the oronasal mask group was greater; leak tends to be more common in men, which may be explained by aspects such as facial features, beards and moustaches. Oronasal masks have more contact surface with skin and are thus predisposed to encounter more skin excretions than other mask types, causing more wear and tear, which can explain the weaker performance.
Our results suggest against a substantial deterioration of mask fit over usage or time, especially on nasal masks and pillows, as the masks’ function remained similar irrespective of mask use. Cumulative or daily mask usage did not change mean leak or CPAP-AHI compared with just having the mask at home unused. If routine renewal intervals are prolonged, patients should be encouraged to contact the sleep unit if any disturbing air leak appears, and healthcare personnel should pay attention to even small new leaks or other signs of mask deterioration to avoid CPAP interruption. However, mask renewal might not always be the optimal solution; for example, the replacement of individual mask parts has also been associated to better adherence.26 Nonetheless, mask renewal might controversially reduce adherence. We have previously shown, that 20% of patients were unsatisfied with a new mask after renewal, and changing the mask per se multiplies the risk for patient abandoning the whole therapy.27 Also in this study, the CPAP-AHI was highest during the first month after renewal, which may be explained by an inferior fit of the new mask. Therefore, short routine mask renewals, or total mask package renewals when the problem only relates to individual mask parts, might impair adherence. Previously, Scharf et al suggested that mask renewal frequency could be used as a surrogate for PAP adherence. In their study, renewing the mask according to the renewal protocol was associated with higher daily CPAP use. However, they do not report the N of patients renewing their mask more than once and daily CPAP use was rather low. Also, as the authors discuss, the study population (military veterans) does not represent the usual OSA patients and the overall adherence was poor.28
The differences between mask brands were modest, and none of the manufacturers performed clearly better than the others. Between all manufacturers, the changes in leak and CPAP-AHI over time were evenly small and statistically nonsignificant. Resmed masks had slightly lower mean leak and CPAP-AHI compared with other brands all-over the study period. Philips Respironics masks were used significantly more compared with Resmed and Fisher & Paykel masks, and Resmed masks the least. These results may be affected by patient preference or comfort.20 In addition, users of other Resmed masks might have gone through more mask model changes to find the optimal mask, as all patients have started with a Resmed mask at the initiation of CPAP treatment. Hence, there might be a confounding factor, if less motivated patients have stopped the treatment/stayed with Resmed masks in comparison to only the most perseverant ones to continue to other brands. Also, as the measuring algorithms are brand-dependable,19 the measures on device manufacturers own masks might give more accurate results.
As shown, the mask renewal policies and mask-related costs differ significantly between countries. Short renewal intervals lead to higher costs and bring about significant amounts of non-recyclable plastic waste: at our sleep unit the cost of CPAP masks is approximately £1.8 M annually, and not replacing the masks every year inflicts remarkable savings. The total economic benefit of updating the policy is difficult to evaluate and needs further analysis. As mentioned above, changes in compliance can appear, partly decreasing potential benefits. Compared with mask renewal, an economically valuable solution could be to replace individual mask parts. Meanwhile, it may need more contact with the patient that implies more medical personnel costs.
Strengths and limitations of the study
This is the first study analysing how long CPAP masks maintain their functionality in a real-life setting. We collected a large data set systematically from a patient pool equaling approximately 30% of the Finnish population. An average participant in the study represents well the average OSA patient regarding gender, age, mask use and type, and is in line with studies in general.6 8 29 Hence, we consider the results applicable to clinical practice in similar populations such as those in Western Europe and the US. Objective data were drawn from the CPAP device, and the follow-up time was several years, while the new remote controlled CPAP devices limit data storage for 12 months. CPAP devices from only one manufacturer were used, reducing bias as the device-recorded measures are brand-dependable. The study included the most commonly used mask types from three leading manufacturers. We do not have any collaboration with the manufacturers. Due to the public healthcare system, neither the cost of the mask nor the patients’ insurance affect the choice of mask or renewal time. We evaluated the effect of time, taking into account both the age of the mask and the actual cumulative usage. The number of masks was greater than the number of patients, and we compared the same masks’ performance over time, largely reducing effects from confounding factors.
This study also has some limitations. This is a single centre retrospective observational study. The patients’ opinions and preferences regarding the masks were not available. We did not have data on several factors that affect mask leak such as nasal congestion, body and head position, nocturnal sweating, coughing, facial hair and maintenance of masks. Due to the strict national tending system the majority of masks, and all of the CPAP devices, were produced by one manufacturer; the findings should be redemonstrated for other manufacturers. All patients were provided total mask packages, so the replacement of individual mask parts could not be evaluated. The majority of the study patients have used the CPAP device for several years; our results may not apply to the first year(s) of therapy. Due to the public healthcare system in Finland, our recommendations may have to be modified to fit the needs of other healthcare systems.