Discussion
In this observational study of a never-smoking cohort with a history of remote but prolonged exposure to SHS, we found the cohort to have an abnormal cardiovascular response to exercise that was proportional to their SHS exposure. Exercise capacity, as measured by highest workload completed (WattsPeak) or volume of oxygen uptake at peak exercise (VO2Peak), was associated with years of exposure to SHS. Remarkably, over 40% of the association of exercise capacity (WattsPeak) with SHS was dependent on O2-PulsePeak, which suggests that the effect of SHS exposure on exercise capacity is importantly mediated through SHS effect on stroke volume and cardiac output. Our finding that past exposure to SHS is a predictor of exercise capacity in an O2-pulse-dependent (a proxy of stroke volume and cardiac output) manner is novel and suggests that SHS exposure has a lasting effect on cardiac function that is observable years after the exposure has ceased. We also found suggestive evidence, which scarcely fell short of statistical significance (p=0.078), that pulmonary air trapping (especially elevated RV/TLC) contributes to lower exercise capacity through its effect on O2-PulsePeak. The latter finding tends to implicate an interacting lung and heart pathophysiology wherein pulmonary hyperinflation limits cardiac output to further impairs exercise capacity (figure 2). Furthermore, we found over 60% of the participants to have a hypertensive response to exercise, suggesting that abnormal escalation of blood pressure contributed to lower exercise capacity in this SHS-exposed cohort in whom only a small minority (4.3%) had known history of hypertension, which was well-controlled in all cases.
Figure 2Proposed model for interaction of SHS with cardiovascular and pulmonary contributors to exercise capacity. Illustration of mediation effects between SHS exposure and exercise capacity. HR, heart rate; HRE, hypertensive response to exercise; IC, inspiratory capacity; SHS, secondhand tobacco smoke; SV, cardiac stroke volume; VC, vital capacity; VE, minute ventilation; VT, volume of tidal breathing.
In previous studies of this cohort of never-smokers with a history of prolonged remote exposure to SHS, we showed the cohort to have an abnormal lung function at rest and abnormal pulmonary response to exercise including (1) reduced diffusing capacity at rest,12 (2) reduced pulmonary capillary recruitment (as measured by impaired rise in diffusing capacity) during exercise,13 (3) decreased small airways airflow indices on spirometry (maximal flow in mid-expiratory and end-expiratory airflows (FEF25–75% and FEF75%)),12 (4) plethysmographic and radiographic evidence of pulmonary air trapping at rest14 and (5) progressive (dynamic) pulmonary hyperinflation during exercise.14 Overall, these abnormalities are suggestive of presence of an unrecognised early or mild obstructive lung disease that, while not meeting the spirometric definition of COPD, is consistent with an early/mild disease that could be categorised as ‘pre-COPD’ and could contribute to lower pulmonary reserve and potential adverse health outcomes.28 29 In the current study, we found evidence that prolonged exposure to SHS, even when remote, is associated with cardiovascular abnormalities suggestive of occult cardiovascular dysfunction with potential additional contribution from pulmonary hyperinflation. These abnormalities reveal subtle but lower cardiopulmonary functional reserve, manifested here as lower exercise capacity, and implicate a reduced efficiency of the body’s oxygen delivery machinery, which could be disadvantageous during the times of increased cardiopulmonary output demands as in physiological distress or disease.
Although it remains unclear how exposure to SHS causes an impairment in cardiac function, an interaction between pulmonary and cardiovascular systems, which occupy the same body cavity (thorax), has been proposed to play a role. Air trapping as measured by lung volumes (FRC/TLC and RV/TLC) is the earliest manifestation of COPD,28 29 and is associated with reduced exercise capacity due to ventilatory limitation caused by progressive air trapping and pulmonary hyperinflation.14 Changes in lung volumes due to pulmonary hyperinflation could cause increased intra-thoracic pressures, particularly during exertion, and thus adversely affect the cardiovascular function.23 25 To investigate this possible mechanism, we examined whether air trapping did contribute to exercise capacity through an interaction with cardiac output by performing a mediation analysis among pulmonary air trapping (FRC/TLC and RV/TLC), cardiac stroke volume (O2-pulse), and exercise capacity (WattsPeak) (figure 2). Although the analysis did not reach statistical significance (p=0.078 for RV/TLC) and thus could not provide any further corroborating evidence for our hypothesis, the analysis did suggest that a substantial proportion (36%) of air trapping effect on exercise capacity may be mediated through stroke volume.
Other factors that may have contributed to lower O2-pulse in this setting include impaired left ventricular (LV) filling from myocardial stiffness, and decreased LV systolic emptying in the setting of increased vascular resistance.30 SHS could through pro-inflammatory effects predispose to endothelial dysfunction.31 At the level of the coronary microvasculature, endothelial dysfunction can promote cardiomyocyte stiffening and myocardial fibrosis,32 whereas peripherally, it can interfere with normal exercise-related relaxation of the muscular arterioles, increasing afterload.30
As relates to vascular dysfunction, it is notable that 62% of our participants experienced a hypertensive response to exercise, a proportion that exceeds the 30%–40% reported in other settings.33–35 Such hypertensive response has been linked to both LV systolic and diastolic dysfunction,36 37 as well as to increased risk of cardiovascular events.38–40 Although we did not detect a relationship between hypertensive response to exercise and SHS, this does not exclude a role for abnormal arterial impedance with exercise as a potential mechanism underlying the SHS-associated diminution in stroke volume.30 Indeed, further research will be necessary to delineate the relative contributions of cardiopulmonary interaction, myocardial disease and vascular dysfunction to exercise intolerance in the context of exposure to direct or indirect smoke.
Our study has limitations that should be kept in view. First, there may be concerns about the generalisability of the findings because the cohort studied are mostly women, which reflects the demographics of those who worked in airlines as flight crew in the latter half of the last century when smoking in aircraft cabin was permitted. The choice to study flight crews permitted overcoming the challenge of long-term SHS exposure assessment by allowing estimation of a more objective and reproducible exposure index based on employment history and the smoking ban timeline on domestic and international flights of different airlines.12 Women have been reported to be more susceptible to adverse health effects of tobacco smoke,41 such that the findings are not necessarily generalisable to men. Second, the cardiovascular findings reported in this study are mainly derived from CPET with no imaging (such as echocardiography and MRI) or invasive haemodynamic monitoring to provide additional robust evidence to corroborate our findings. Such studies are needed and are in progress (ClinicalTrials.gov Identifier: NCT04715568). Nevertheless, studies describing cardiovascular health effects of direct smoking using echocardiography and MRI have been previously reported, which corroborate our findings.42 43 Our report, however, is the first to describe the chronic and long-term cardiovascular health effects due to past prolonged exposure to SHS. Third, while we found association of exercise capacity (WattsPeak) with years of SHS exposure, the association of respiratory symptoms with SHS was less striking and less consistent across the different questionnaire platforms. However, it is not uncommon to see differences in scores across different respiratory questionnaires,44 and similarly, baseline respiratory symptoms (mMRC Dyspnoea Scale and UCSF FAMRI SHS questionnaire) may measure different things and thus produce different scores compared with those done at peak exercise (modified Borg Dyspnoea Scale). For example, participants who had impairments at baseline and thus were more symptomatic are likely to not perform as well during the exercise and thus may report lesser symptoms in a sub-maximal effort exercise test.
In conclusion, healthy never-smokers with history of remote but prolonged exposure to SHS have an abnormal cardiovascular response to exercise, which is characterised by a stroke volume (oxygen-pulse) and thus an exercise capacity that are reduced proportional to their years of exposure to SHS. The mechanisms by which past exposure to SHS may limit stroke volume and thus exercise capacity are not entirely clear. But impaired LV filling and emptying may be involved, with contributions from pulmonary hyperinflation (beyond ventilatory limitation) and vascular dysfunction, both peripherally and centrally. Overall, the abnormal cardiovascular response to exercise in this population reveals the presence of subclinical pathology that impairs the cardiopulmonary functional reserve and reduces the efficiency of body’s oxygen delivery machinery, which could be disadvantageous during the times of increased cardiopulmonary output demands as in physiological distress or disease.