Supplement: Reduced tidal volume inflection point and elevated operating lung volumes in well-controlled females with asthma

3

4 Andrew R. Brotto^{1,2}, Devin B. Phillips^{1,2,3}, Samira D. Rowland^{1,2}, Linn E. Moore^{1,2}, Eric Wong¹,

- 5 Michael K. Stickland¹
- 6
- ⁷ ¹Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta,
- 8 Edmonton, AB
- 9 ²Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB
- ³School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON
- 11
- 12 **Running title:** Supplement: V_T-inflection and dyspnea in females with asthma
- 13
- 14 Corresponding author:
- 15 Dr. Michael K. Stickland*
- 16 3-135 Clinical Sciences Building, University of Alberta
- 17 8440 112 St NW, Edmonton, AB T6G 2B7
- 18 Email: <u>michael.stickland@ualberta.ca</u>
- 19 Phone number: 1-780-492-3995
- 20 Fax number: 1-780-492-4483

21 **Results**

- 22 Male participant characteristics can be found in Supplementary Table 1. Pulmonary function pre-
- 23 bronchodilator, post-bronchodilator, and following cardiopulmonary exercise test (CPET) can be
- found in Supplementary Table 2. Males with and without asthma had a significant increase in
- 25 forced expired volume in 1 second following CPET due to exercise induced bronchodilation (1).
- 26 Ventilatory and metabolic responses to exercise

27 Male metabolic and ventilatory responses at highest equivalent workload (150W), the tidal volume

28 (V_T)-inflection point, and peak exercise can be found in Supplementary Table 3. Ventilation during

submaximal exercise was not significantly different between males with asthma and male controls (p=0.56) as both breathing frequency and V_T were not significantly different between the two

31 groups (p=0.07 and p=0.16, respectively) (Supplementary Figure 1A and 1B).

When V_T-inflection is expressed as a percent of $\dot{V}O_{2peak}$, there was no significant difference between female controls and females with asthma (Control: $81 \pm 9\%$ vs. Asthma: $77 \pm 10\%$; p= 0.155). However, a post-hoc analysis of the data suggests the current study was underpowered to find significance (β =0.42) and future exploration could be beneficial.

Females with asthma did not demonstrate ventilatory efficiency impairments as compared with female controls as $\dot{V}_{\rm E}/\dot{V}{\rm CO}_2$ at peak exercise and the lowest 30-seconds (Nadir) were not significantly different between females with asthma and controls (p=0.595 and p=0.312, respectively). Further, the $\dot{V}_{\rm E}/\dot{V}{\rm CO}_{2\rm slope}$ was not significantly different between conditions (p=0.708), and the y-intercept showed no significant group differences (p=0.934). Lastly, end-tidal PCO₂ at peak exercise was not different between females with asthma and controls (p=0.336).

Similar to females with asthma, $\dot{V}_{\rm E}/\dot{V}{\rm CO}_2$ in males with asthma were not different between groups at peak exercise (p=0.29) or the lowest 30-seconds (Nadir) (p=0.23). Further, $\dot{V}_{\rm E}/\dot{V}{\rm CO}_{2{\rm slope}}$ was not significantly different between males with asthma and male controls (Control: 23.1 ± 2.7 vs. Asthma: 22.4 ± 3.0; p=0.48). End-tidal PCO₂ at peak exercise was also not different between the two groups (p=0.61).

47 *Perceptual responses to exercise*

48 The dyspnea-ventilation slope was not significantly different between females with asthma and

female controls (Control: 0.07 ± 0.03 vs. Asthma: 0.08 ± 0.02 ; p=0.13) (Figure 2C). Similarly,

50 the dyspnea-ventilation slope was not different between males with asthma and male controls

51 (Control: 0.06 ± 0.02 vs. Asthma: 0.06 ± 0.01 ; p=0.46) (Supplementary Figure 2C).

52 In females with asthma, 13 participants terminated the test due to "leg discomfort", while 3 participants terminated the test due to "both leg and breathing discomfort". In comparison, 14 53 54 female control participants terminated the test due to "leg discomfort" and 2 participants 55 terminated the test due to "both leg and breathing discomfort". The selection frequency of the reason for termination was not significantly different (p=0.50). In males with asthma, 12 56 participants terminated the test due to "leg discomfort", while 4 participants terminated the test 57 58 due to "breathing discomfort". In comparison, 13 male control participants terminated the test due to "leg discomfort" and 3 participants terminated the test due to "both leg and breathing 59 60 discomfort". The selection frequency of the reason for termination was significantly different 61 (p=0.02).

- 62 1. Rossman MJ, Petrics G, Klansky A, Craig K, Irvin CG, Haverkamp HC. Exercise-
- 63 induced Bronchodilation Equalizes Exercise Ventilatory Mechanics despite Variable Baseline
- 64 Airway Function in Asthma. Med Sci Sports Exerc. 2022;54(2):258-66. doi:
- 65 10.1249/MSS.00000000002793. PubMed PMID: 34559730.

Figure Captions

Supplementary Figure 1. Ventilatory and lung mechanic responses to exercise in males with asthma and male controls. This graph shows data means \pm standard deviation. *Signifies p<0.05 between male controls and males with asthma.

Supplementary Figure 2. Dyspnea response to exercise in males with asthma and male controls. This graph shows data means \pm standard deviation. *Signifies p<0.05 between male controls and males with asthma.

Supplementary Table 1. Male par	ticipant character	istics				
Variable	Control	Asthma	p-value			
n	16	16				
Age (years)	24 ± 3	24 ± 5	0.77			
Height (m)	1.78 ± 0.05	1.78 ± 0.08	0.32			
Weight (kg)	79.5 ± 14.0	77.8 ± 11.9	0.26			
BMI (kg·m ⁻²)	24.9 ± 3.1	24.5 ± 3.0	0.44			
ACQ Score	0.0 ± 0.0	0.7 ± 0.8	0.01			
Allergies (%)	20	63				
Medications						
SABA (%)	0	50				
ICS (%)	0	31				
Combination (%)	0	13				
Airway Evaluation						
Positive Reversibility	0/16	10/16				
Mean FEV ₁ Change (%)	6 ± 3	10 ± 5	0.02			
Positive MCT (%)	0/16	6/16				
Mean FEV ₁ Change (%)	3 ± 2	14 ± 8	0.00			
Positive ECT (%)	0/16	1/16				
Mean FEV ₁ Change (%)	2 ± 1	4 ± 4	0.18			
Values are expressed as mean ± SD. BMI: body mass index; ACQ: asthma						

Values are expressed as mean \pm SD. BMI: body mass index; ACQ: asthma control questionnaire; SABA: short-acting beta agonist; ICS: inhaled corticosteroid; MCT: methacholine challenge test; ECT: exercise challenge test; FEV₁: forced expired volume in 1-second. Note: positive reversibility defined as a change in FEV₁ by 12% following bronchodilator

66

Supplementary Table 2. Pulmon	ary function with and without bronche	dilator and following exercise in ma	ale control and asthma

	Control			Asthma		
	Pre-BD	Post-BD	Post-CPET	Pre-BD	Post-BD	Post-CPET
Spirometry						
FVC (L)	6.06 ± 1.03	6.16 ± 0.99	6.31 ± 1.15	5.62 ± 0.86	5.65 ± 0.92	5.53 ± 0.70
FVC (% predicted)	107 ± 12	109 ± 11	110 ± 17	105 ± 15	107 ± 16	107 ± 16
$FEV_1(L)$	4.83 ± 0.72	$5.10 \pm 0.74^{\$}$	$5.20 \pm 0.56^{\$}$	$4.03 \pm 0.62*$	$4.41 \pm 0.67^{\$}$	$4.15 \pm 0.71^{\$}$
FEV ₁ (% predicted)	101 ± 13	$108 \pm 9^{\$}$	$109 \pm 10^{\$}$	$90 \pm 18^{*}$	$99 \pm 17^{\$}$	$96 \pm 17^{\$}$
FEV ₁ /FVC	80 ± 4	$83 \pm 4^{\$}$	$84 \pm 9^{\$}$	$72 \pm 9*$	$79 \pm 9^{\$}$	$75 \pm 9^{\$}$
FEV ₁ /FVC (% predicted)	95 ± 5	$99 \pm 5^{\$}$	$99 \pm 11^{\$}$	85 ± 9*	$92 \pm 9^{\$}$	$89 \pm 10^{\$}$
Lung Volumes						
TLC (L)	7.69 ± 1.14			7.76 ± 1.33		
TLC (% predicted)	107 ± 15			113 ± 21		
RV (L)	1.32 ± 0.50			1.43 ± 0.28		
RV (% predicted)	86 ± 32			95 ± 15		
IC (L)	3.88 ± 0.74			3.57 ± 0.67		
IC (% predicted)	104 ± 16			100 ± 16		
Diffusion Capacity						
DLCO (ml·min ⁻¹ ·mmHg ⁻¹)	37.6 ± 4.2			35.3 ± 5.7		
DLCO (% predicted)	110 ± 10			107 ± 11		

Values expressed as mean \pm standard deviation. FVC: forced vital capacity; FEV₁: forced expired volume in 1 second; TLC: total lung capacity; RV: reserve volume; IC: inspiratory capacity; DLCO: diffusing capacity of carbon monoxide; BD: bronchodilator; CPET: cardiopulmonary exercise test. *Signifies p<0.05 as compared to controls. ^{\$}Signifies p<0.05 as compared to Pre-BD.

67

68

Supplementary Table 3. Metabolic and ventilatory responses in males at 150W, tida	al volume inflection point, and peak exercise.
---	--

	150 Watts		V _T -Inflection Point		Peak	
	Control	Asthma	Control	Asthma	Control	Asthma
VO _{2peak} (L/min)	2.20 ± 0.24	2.28 ± 0.25	3.21 ± 0.69	3.07 ± 0.72	3.90 ± 0.68	3.78 ± 0.60
VO _{2peak} (ml/kg/min)	26.8 ± 3.0	29.8 ± 4.4	38.9 ± 7.0	40.0 ± 7.6	47.4 ± 7.0	49.0 ± 8.4
<i>V</i> O _{2peak} (% predicted)					134 ± 19	133 ± 19
$\dot{V}_{\rm E}$ (L/min)	56.2 ± 9.6	62.4 ± 10.4	93.7 ± 25.3	91.4 ± 27.8	139.6 ± 26.6	141.7 ± 32.4
Power Output (W)	150 ± 0	150 ± 0	220 ± 44	206 ± 47	278 ± 43	258 ± 50
RER	1.01 ± 0.08	1.04 ± 0.07	1.09 ± 0.06	1.08 ± 0.08	1.17 ± 0.06	1.15 ± 0.07
$\dot{V}_{\rm E}/\dot{V}{\rm CO}_2$	25 ± 2	26 ± 2	27 ± 3	27 ± 3	32 ± 4	33 ± 4
VCO ₂ (L/min)	2.21 ± 0.23	2.38 ± 0.28	3.50 ± 0.73	3.33 ± 0.86	4.40 ± 0.64	4.25 ± 0.71
$P_{ET}CO_2 (mmHg)$	42.6 ± 3.1	40.8 ± 3.3	40.5 ± 4.2	39.4 ± 4.3	34.6 ± 3.5	33.8 ± 4.6
fb (breaths/min)	24 ± 5	29 ± 7	31 ± 6	34 ± 8	46 ± 9	52 ± 11
V _T (L)	2.44 ± 0.43	2.30 ± 0.36	3.05 ± 0.58	2.78 ± 0.65	3.10 ± 0.51	$2.74 \pm 0.43*$
IC (L)	3.82 ± 0.77	3.61 ± 0.54	3.95 ± 0.73	3.68 ± 0.63	3.89 ± 0.41	$3.46 \pm 0.47*$
IC (%TLC)	49 ± 5	47 ± 6	51 ± 5	49 ± 7	51 ± 6	45 ± 6
EELV (%TLC)	51 ± 5	53 ± 6	49 ± 5	51 ± 7	49 ± 6	55 ± 6
IRV (%TLC)	16 ± 4	17 ± 4	11 ± 5	12 ± 4	11 ± 6	9 ± 5
V _T /IC (%)	67 ± 8	64 ± 8	78 ± 10	76 ± 12	80 ± 11	80 ± 10
EILV (%TLC)/ $\dot{V}_{\rm E}$	1.55 ± 0.32	1.36 ± 0.20	1.04 ± 0.28	1.06 ± 0.33	0.67 ± 0.11	0.73 ± 0.16
EFL (%)	0 ± 0	$13 \pm 28*$	10 ± 23	23 ± 28	28 ± 27	$54 \pm 28^*$
HR (beats/min)	137 ± 13	145 ± 14	167 ± 14	165 ± 22	186 ± 7	181 ± 15
SpO ₂ (%)	95 ± 4	96 ± 4	95 ± 2	95 ± 4	94 ± 4	96 ± 2
Dyspnea	2.1 ± 1.3	2.9 ± 1.1	4.1 ± 1.6	4.8 ± 1.5	7.1 ± 1.8	7.7 ± 1.5
Leg Discomfort	3.3 ± 1.4	3.8 ± 1.1	5.9 ± 2.1	5.9 ± 1.6	9.0 ± 1.3	9.1 ± 1.2

Values are expressed as mean \pm standard deviation. $\dot{V}O_2$: rate of oxygen consumption; $\dot{V}E$: minute ventilation; RER: respiratory exchange ratio; $\dot{V}CO_2$: rate of carbon dioxide production; $P_{ET}CO_2$: partial pressure of end-tidal carbon dioxide; fb: breathing frequency; V_T : tidal volume; IC: inspiratory capacity; EELV: end-expiratory lung volume; EILV: end-inspiratory lung volume; IRV: inspiratory reserve volume; EFL: expiratory flow limitation; HR: heart rate; SpO₂: arterial oxygen saturation. *Signifies p<0.05 between asthma and control.

69

	125 Watts		V _T -inflection Point		Peak	
	Control	Asthma	Control	Asthma	Control	Asthma
<i>V</i> O _{2peak} (L/min)	1.71 ± 0.12	1.84 ± 0.19	2.19 ± 0.42	$1.85 \pm 0.35*$	2.70 ± 0.29	$2.40 \pm 0.35*$
VO _{2peak} (ml/kg/min)	27.9 ± 3.3	30.6 ± 5.6	35.7 ± 6.7	$30.6 \pm 6.2*$	44.0 ± 5.3	39.8 ± 7.1
<i>V</i> O _{2peak} (% predicted)					156 ± 18	$139 \pm 20*$
$\dot{V}_{\rm E}$ (L/min)	48.9 ± 6.3	$56.6 \pm 8.6*$	70.2 ± 16.5	57.7 ± 12.3*	110.1 ± 14.2	91.6 ± 15.7*
Power Output (W)	125 ± 0	125 ± 0	163 ± 33	$128 \pm 26*$	216 ± 22	177 ± 25*
RER	1.03 ± 0.07	1.07 ± 0.07	1.11 ± 0.07	1.07 ± 0.06	1.21 ± 0.05	1.17 ± 0.08
$\dot{V}_{\rm E}/\dot{V}{\rm CO}_2$	28 ± 2	29 ± 3	28.8 ± 2.0	29.2 ± 2.1	34 ± 3	33 ± 3
<i>V</i> CO ₂ (L/min)	1.75 ± 0.17	$1.95 \pm 0.17*$	2.43 ± 0.50	$1.98 \pm 0.41*$	3.25 ± 0.26	$2.77 \pm 0.38*$
P _{ET} CO ₂ (mmHg)	38.7 ± 2.6	37.0 ± 3.3	37.1 ± 2.6	36.9 ± 2.5	31.9 ± 2.5	32.7 ± 2.4
fb (breaths/min)	27 ± 4	$33 \pm 7*$	32 ± 6	32 ± 6	49 ± 7	46 ± 8
$V_{T}(L)$	1.87 ± 0.25	1.76 ± 0.21	2.21 ± 0.39	$1.82 \pm 0.31*$	2.27 ± 0.32	$2.01 \pm 0.20*$
IC (L)	2.87 ± 0.42	$2.54 \pm 0.30*$	2.90 ± 0.42	$2.57 \pm 0.25*$	2.87 ± 0.40	$2.51 \pm 0.31*$
IC (%TLC)	53 ± 7	51 ± 5	52 ± 7	51 ± 7	53 ± 7	51 ± 6
EELV (%TLC)	47 ± 7	49 ± 5	48 ± 7	49 ± 7	47 ± 7	50 ± 7
IRV (%TLC)	18 ± 5	$15 \pm 5^{*}$	12 ± 6	15 ± 4	11 ± 5	10 ± 4
Vt/IC (%)	66 ± 7	71 ± 10	77 ± 10	71 ± 8	80 ± 8	79 ± 7
EILV (%TLC)/ $\dot{V}_{\rm E}$	1.70 ± 0.24	1.56 ± 0.24	1.34 ± 0.36	1.53 ± 0.30	0.83 ± 0.11	$1.01 \pm 0.17*$
EFL (%)	0 ± 0	$14 \pm 27*$	3 ± 10	$28 \pm 21*$	16 ± 25	$39 \pm 33^*$
HR (beats/min)	151 ± 15	$162 \pm 14*$	169 ± 15	162 ± 17	185 ± 10	182 ± 12
SpO ₂ (%)	96 ± 2	97 ± 2	97 ± 3	97 ± 2	96 ± 4	96 ± 2
Dyspnea	2.1 ± 1.2	$3.4 \pm 1.0^{*}$	3.5 ± 1.8	3.8 ± 1.2	7.1 ± 2.0	7.4 ± 2.3
Leg Discomfort	2.9 ± 0.8	$4.6 \pm 1.2^*$	4.5 ± 1.7	4.9 ± 1.9	8.7 ± 1.7	9.1 ± 1.0

Values are expressed as mean \pm standard deviation. $\dot{V}O_2$: rate of oxygen consumption; $\dot{V}E$: minute ventilation; RER: respiratory exchange ratio; $\dot{V}CO_2$: rate of carbon dioxide production; $P_{ET}CO_2$: partial pressure of end-tidal carbon dioxide; fb: breathing frequency; V_T : tidal volume; IC: inspiratory capacity; EELV: end-expiratory lung volume; EILV: end-inspiratory lung volume; IRV: inspiratory reserve volume; EFL: expiratory flow limitation; HR: heart rate; SpO₂: arterial oxygen saturation. *Signifies p<0.05 between asthma and control.