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ABSTRACT
Background  Existing models have performed poorly when 
predicting mortality for patients undergoing venovenous 
extracorporeal membrane oxygenation (VV-ECMO). This 
study aimed to develop and validate a machine learning 
(ML)-based prediction model to predict 90-day mortality in 
patients undergoing VV-ECMO.
Methods  This study included 368 patients with acute 
respiratory failure undergoing VV-ECMO from 16 tertiary 
hospitals across South Korea between 2012 and 2015. 
The primary outcome was the 90-day mortality after ECMO 
initiation. The inputs included all available features (n=51) 
and those from the electronic health record (EHR) systems 
without preprocessing (n=40). The discriminatory strengths 
of ML models were evaluated in both internal and 
external validation sets. The models were compared with 
conventional models, such as respiratory ECMO survival 
prediction (RESP) and predicting death for severe acute 
respiratory distress syndrome on VV-ECMO (PRESERVE).
Results  Extreme gradient boosting (XGB) (areas under 
the receiver operating characteristic curve, AUROC 0.82, 
95% CI (0.73 to 0.89)) and light gradient boosting (AUROC 
0.81 (95% CI 0.71 to 0.88)) models achieved the highest 
performance using EHR’s and all other available features. 
The developed models had higher AUROCs (95% CI 0.76 
to 0.82) than those of RESP (AUROC 0.66 (95% CI 0.56 
to 0.76)) and PRESERVE (AUROC 0.71 (95% CI 0.61 to 
0.81)). Additionally, we achieved an AUROC (0.75) for 90-
day mortality in external validation in the case of the XGB 
model, which was higher than that of RESP (0.70) and 
PRESERVE (0.67) in the same validation dataset.
Conclusions  ML prediction models outperformed previous 
mortality risk models. This model may be used to identify 
patients who are unlikely to benefit from VV-ECMO therapy 
during patient selection.

INTRODUCTION
Acute respiratory failure (ARF) is associated 
with high mortality, exceeding 60% in its 
most severe forms, despite the various strate-
gies available for reducing ventilator-induced 
lung injury.1 2 Extracorporeal membrane 

oxygenation (ECMO) has emerged as 
a rescue therapy for managing types of 
patients.2 Recent studies with randomised 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Existing mortality risk models have been developed 
to estimate the likelihood of in-hospital survival in 
patients who received extracorporeal membrane 
oxygenation (ECMO). However, few studies have de-
veloped a predictive mortality model combined with 
machine learning (ML) methods in patients under-
going ECMO therapy. No studies have developed a 
ML-based model for predicting mortality in patients 
with venovenous ECMO (VV-ECMO) alone.

WHAT THIS STUDY ADDS
	⇒ This is the first study to demonstrate that ML models 
developed only for patients with VV-ECMO outper-
form conventional regression-based models such 
as respiratory ECMO survival prediction (RESP) and 
predicting death for severe acute respiratory dis-
tress syndrome on VV-ECMO (PRESERVE). We devel-
oped a more practical model with a readily available 
electronic health record system without further pre-
processing and showed its performance is compa-
rable with those using full features. The ML-based 
models successfully predicted the risk of 90-day 
mortality and surpassed the accuracy, precision and 
sensitivity of the conventional risk-scoring models, 
RESP and PRESERVE, by 14%, 2.6% and 31%, re-
spectively. External validation with different datasets 
and decision curve analysis also revealed that our 
models are transferable to other datasets, and cli-
nicians can achieve positive net benefits across all 
thresholds for decision.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ The ML prediction model for 90-day mortality rate 
could accurately identify VV-ECMO candidates with 
a low probability of success, which may facilitate ef-
fective utilisation of VV-ECMO by clinicians.
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controlled trials suggest that ECMO should not be 
delayed and rather should be initiated rapidly in patients 
with refractory hypoxaemia after optimal conventional 
management.3–5 Accordingly, extracorporeal life support 
organisation (ELSO) guidelines have been developed to 
help clinicians determine eligibility.5 6 However, the only 
absolute contraindication for applying ECMO is for those 
with anticipated non-recovery without any viable decan-
nulation.

Yet, associated mortality in patients with ECMO therapy 
still remains very high, and there are several circum-
stances other than absolute contraindications for ECMO 
cannulation, a very high-risk group due to numerous 
clinical conditions.7 8 Moreover, the demand for ECMO 
has escalated tremendously among patients with ARF, 
particularly during the COVID-19 pandemic.9 Prediction 
of mortality for ECMO treatment may aid in judicious 
patient selection for using the finite ECMO resources.10 11

To solve this problem, several prognostic scores have 
been developed to predict survival rates of patients 
who receive ECMO, such as the PREdiction of Survival 
on ECMO Therapy Score and predicted death rate 
for severe ARF on venovenous ECMO (VV-ECMO) 
(PRESERVE).12–14 However, these models have relatively 
poor performance due to the linearity in the studies that 
were used to develop them.7 The unique characteristics 
of VV-ECMO patients, such as the high mortality rates 
and diverse etiologies of ARF, also were an impediment 
to accurate mortality prediction. Thus, recent studies of 
ECMO prediction models discourage using any available 
scores as a single decision tool.

In the last decade, advanced modelling and machine 
learning (ML) techniques have demonstrated promising 
results in improving the prediction of the prognosis 
of critically ill patients.15 Therefore, using nationwide 
registry data, we aimed to develop ML-based models for 
90-day and in-hospital mortality prediction in patients 
treated with VV-ECMO. The ML prediction model may 
demonstrate a higher positive gain across different deci-
sion threshold probabilities in comparison to traditional 
scores, such as respiratory ECMO survival prediction 
(RESP) and PRESERVE scores. The model was further 
externally validated using an independent dataset to 
corroborate the classifier’s reliability and compare the 
discrimination performance of the model with conven-
tional prognostic scores. We also developed a derived 
model with sparse features readily available from the 
electronic health record (EHR) system.

METHODS
In this retrospective observational cohort study, we used 
a multicentre registry obtained from 16 tertiary hospitals 
in South Korea from January 2012 to December 2015. 
The cohort profile was explained in detail in a previous 
study.16 17 The cohort comprised critically ill patients who 
were at least 16 years old and underwent VV-ECMO for 
severe ARF. There were no predefined criteria for the 

indications and contraindications of ECMO use between 
the participating centres. Decisions were taken at the 
discretion of the attending physicians at each centre. 
However, the initiation of ECMO was based on the 
general recommendations of the ELSO guidelines. Data 
were collected from each participating hospital using a 
standardised registry form. Participating hospitals regis-
tered a total of 428 patients during the study period. Of 
them, 60 were excluded for being on the ECMO for less 
than 48 hours, as patients in severe condition with a mean 
APACHE score of 30, and septic shock status within the 
first 48 hours were unlikely to meet the indications for 
continued ECMO support.18 We divided the cohort into 
training (n=257) and test sets (n=111) at a ratio of 7:3. We 
also obtained another VV-ECMO cohort from the Seoul 
National University Bundang Hospital (SNUBH) for 
external validation between January 2016 and December 
2021; 78 patients were included into the cohort (online 
supplemental figure 1). To protect the privacy and confi-
dentiality of research participants’ personal information, 
only anonymised and deidentified data were analysed.

To develop predictive models that can be easily imple-
mented in the EHR systems in clinical practice, we used 
two sets of input variables: (1) EHR features, which were 
readily obtainable structured variables from the EHR 
system without requiring any preprocessing (n=40) and 
(2) all available manual input features (n=51). The EHR 
features were reviewed and selected by two attending 
physicians and an IT technician from the Department of 
Medical Informatics. All available manual input features 
included (1) demographic information, (2) anthropo-
metric measurements, (3) laboratory values, (4) vital 
signs, (5) mechanical ventilator (MV)-related variables, 
(6) variables on patients’ severity of illness before ECMO, 
(7) hospital-related variables and (8) variables not speci-
fied otherwise (online supplemental table 2).

Respiratory diagnoses included viral/bacterial pneu-
monia, chronic obstructive pulmonary disease/asthma, 
trauma/burn, asphyxia, acute exacerbation of interstitial 
lung disease or chronic respiratory failure. Immunocom-
promised status included solid tumours, haematological 
malignancies, HIV infection, solid organ transplantation 
or liver cirrhosis. Central nervous system dysfunction 
included encephalopathy, neurotrauma, cerebral embo-
lism, stroke, seizures or epileptic syndrome.13 All the 
input variables were obtained at the closest value before 
ECMO insertion. The primary outcome measure was 
90-day mortality for a fair comparison with other 90-day 
mortality models.

To prepare the input features for the model, a compre-
hensive combination of imputations, outliers and feature 
scaling methods was implemented to boost the ML 
models. Extreme outliers with a Z-score greater or less 
than two were replaced by less extreme values with the 
95th percentile, using winsorisation techniques to mini-
mise the influence of outliers. The continuous variables 
were normalised to transform the varied features for simi-
larity. Random forest-based multivariate imputation by 
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chained equations for continuous variables and K-nearest 
neighbours (KNN) for categorical variables were used to 
substitute missing values based on robust statistics and 
random forest regression algorithms for reducing bias 
while increasing precision.18 19 A bootstrap resampling 
technique with 1000 replicates was used to compute 95% 
CIs for areas under the receiver operating characteristic 
curve (AUROCs). The optimal threshold point of the 
Youden index was measured to assess the sensitivity and 
specificity of both mortalities.

Six supervised ML models based on regression, tree 
ensembles, gradient boosting and neural networks were 
trained using 10-fold cross-validation to predict 90-day 
mortality in patients who underwent VV-ECMO. All 
parameters were tuned with randomised search cross-
validation in 30 iterations, and each model’s robustness 
was assessed using AUROC, area under the precision 
recall curve (AUPRC), sensitivity, specificity, positive 
predictive values (PPV) and negative predictive values.

Calibration plots were used to assess the reliability of 
the predictive models, detect biases and ensure that the 
model’s predictions align accurately with the observed 
outcomes. Additionally, shapley additive explanations 
(SHAP) analysis was performed to explore the impact 
of each feature on the response variable and to inter-
pret how a single feature can affect the output of the 
prediction model.19 Decision curve analysis (DCA) was 
performed to evaluate the net benefit of the developed 
models across different thresholds.

We used two strategies to demonstrate the capabilities 
of the developed models: (1) comparison of discrimi-
nation performance with previously established models 
such as RESP and PRESERVE and (2) external valida-
tion of the developed models using an independent 
dataset for primary outcome. Therefore, we compared 
the AUROC of our EHR feature models with those of 
RESP and PRESERVE. We then validated the models with 
another dataset from SNUBH. Model development and 
validation were conducted using Python (Python Soft-
ware Foundation, Wilmington, Delaware, USA; V.3.8.8) 
with the Scikit-learn library20–27

All statistical analyses were performed by using R studio 
software (RStudio, Boston, Massachusetts, USA; V.4.1.0). 
We used a standard two sample t-test for numeric vari-
ables and a χ2 test of independence for categorical vari-
ables. Results are present as mean±SD and frequencies 
and percentages for continuous and categorical vari-
ables, respectively. A p<0.05 was considered statistically 
significant.28

Patient and public involvement
None.

RESULTS
An overview of the cohorts is summarised in online 
supplemental figure 1 and the baseline patient charac-
teristics for the training and test (internal and external 

validation) cohorts are shown in table  1. None of the 
features differed between the training and test set except 
for the aetiology of respiratory failure (online supple-
mental table 3). The 90-day and in-hospital mortality 
rates were similar between the training and test cohorts 
(57.2% and 61.9% vs 57.7% and 63.1%, respectively). In 
the external validation set, the 90-day mortality rate was 
48.7%, whereas the in-hospital mortality rate was 51.3%.

When the ML models for 90-day mortality were eval-
uated using AUROC in the internal validation set, the 
light gradient boosting (LGB) model scored the highest 
among the ML models using all features in the testing 
cohort (AUROC of 0.80 (95% CI 0.71 to 0.88); AUPRC of 
0.82 (95% CI 0.71 to 0.91)) (online supplemental table 
4 and figure 2). The extreme gradient boosting (XGB) 
model had the second highest scores, with an AUROC 
of 0.79 (95% CI 0.69 to 0.87) and AUPRC of 0.82 (95% 
CI 0.72 to 0.91). All the AUROC values in ML models for 
90-day mortality were higher than those obtained from 
PRESERVE and RESP (online supplemental figure 3). 
When the outcome was defined as in-hospital mortality in 
the test set, the best model had an AUROC of 0.83 (95% 
CI 0.74 to 0.91) and AUPRC of 0.88 (95% CI 0.79 to 0.95) 
(online supplemental table 5). ML models also demon-
strated superior performance to conventional models 
when predicting in-hospital mortality with all available 
features in the test set (online supplemental figure 4A).

To develop models that use a smaller set of readily avail-
able clinical data, we developed ML models comprising 
only variables readily obtainable from EHR systems 
without any preprocessing. For the prediction of 90-day 
mortality, the XGB model had the highest AUROC (0.82; 
95% CI 0.73 to 0.89) and AUPRC (0.87; 95% CI 0.79 to 
0.93) followed by the LGB model (AUROC, 0.81; 95% 
CI 0.71 to 0.88) for the test set (table 2, figure 1). The 
XGB and LGB model achieved a PPV of 0.77 (95% CI 
0.65 to 0.87) and 0.74 (95% CI 0.63 to 0.84), respec-
tively. All ML-based models with EHR features achieved 
a significantly higher AUROC of 0.82 (95% CI 0.73 to 
0.89) compared with that of RESP (0.66; 95% CI 0.56 
to 0.76) and PRESERVE (0.71; 95% CI 0.61 to 0.81) 
(table 2, figure 2). Similarly, for the outcome of in-hos-
pital mortality, the predictive effectiveness of XGB 
models using EHR features was considerably better than 
the conventional RESP and PRESERVE models (online 
supplemental figure 4B).

To identify the degree of contribution of each feature in 
predicting the risk of 90-day mortality, we also described 
the SHAP summary plot of the top 20 features of the XGB 
model (all features vs EHR features, online supplemental 
figure 5 and figure 3, respectively). The parts are sorted 
in descending order of Shapley values. Consequently, 
the features that contributed most to the model perfor-
mance were age, body surface area, blood pressure, blood 
gas and ventilator parameters. The calibration plots of 
the XGB model for the 90-day mortality prediction are 
shown in figure  4 (all features vs EHR features, online 
supplemental figure 6 and figure 4, respectively).
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Table 1  Baseline characteristics of VV-ECMO treated patients

Model construction data Internal validation External validation data

Training cohort (n=257) Testing cohort (n=111) (n=78)

Age (years) 55.9 (15.7) 53.1 (14.7) 58.5 (13.7)

Sex, male (%) 172 (66.9%) 75 (67.6%) 49 (62.8%)

Height (cm) 165 (8.14) 166 (8.5) 164 (8.8)

Weight (kg) 62.1 (11.7) 63.7 (13.3) 66.2 (16.5)

Body mass index (kg/m2) 22.9 (3.8) 23.1 (4.0) 24.6 (5.20)

Immunocompromised status 58 (22.6%) 30 (27.0%) 20 (25.6%)

CNS dysfunction 10 (3.9%) 6 (5.4%) 10 (12.8%)

Sodium bicarbonate infusion 25 (9.7%) 10 (9.0%) 17 (21.8%)

Cardiac arrest 30 (11.7%) 14 (12.6%) 4 (5.1%)

Pre SOFA score 10.8 (3.9) 11.3 (4.0) 13.9 (2.9)

NMB agent 136 (52.9%) 47 (42.3%) 75 (96.2%)

Aetiology of respiratory failure

Viral pneumonia 26 (10.1%) 18 (16.2%) 27 (34.6%)

Bacterial pneumonia 73 (28.4%) 31 (27.9%) 4 (5.1%)

COPD/asthma 3 (1.2%) 2 (1.8%) 1 (1.3%)

Trauma/burn 10 (3.9%) 5 (4.5%) 0 (0%)

Asphyxia 0 (0%) 1 (0.9%) 4 (5.1%)

AE-ILD 37 (14.4%) 11 (9.9%) 0 (0%)

Chronic respiratory failure 15 (5.8%) 3 (2.7%) 0 (0%)

Other respiratory failure 93 (36.2%) 40 (36.0%) 42 (53.8%)

Pre-ECMO ventilator settings

PEEP (cm H2O) 9.52 (4.1) 9.01 (3.6) 7.44 (2.9)

Peak inspiratory pressure (cm H2O) 28.6 (6.4) 29.0 (6.1) 25.9 (9.0)

PF ratio 74.0 (52.9) 78.5 (38.4) 62.9 (31.9)

Minute ventilation (L/min) 10.4 (4.4) 9.96 (3.9) 9.45 (5.0)

Respiratory rate (/min) 24.1 (7.2) 23.2 (6.8) 24.6 (7.3)

MV time before ECMO

<48 hours 136 (52.9%) 70 (63.1%) 34 (43.6%)

>7 days 74 (28.8%) 22 (19.8%) 23 (29.5%)

48 hours to 7 days 46 (17.9%) 17 (15.3%) 21 (26.9%)

Pre-ECMO blood gases

PaCO2 (mm Hg) 56.8 (24.9) 57.3 (25.4) 53.1 (26.1)

PaO2 (mm Hg) 65.4 (34.0) 70.0 (22.0) 96.9 (78.5)

SaO2 (%) 83.3 (13.8) 85.4 (12.9) 89.1 (11.6)

Hemoglobin (g/dL) 10.8 (2.4) 10.9 (2.3) 10.9 (2.3)

TBIL (μmol/L) 1.92 (3.7) 1.98 (2.9) 3.90 (13.2)

Creatinine (mg/dL) 1.30 (1.6) 1.36 (1.5) 1.73 (4.9)

Platelet count 166 (113) 155 (114) 174 (105)

Mortality

90-day mortality 147 (57.2%) 64 (57.7%) 38 (48.7%)

In-hospital mortality 159 (61.9%) 70 (63.1%) 41 (51.3%)

Data are presented as number (%) or mean (SD), unless otherwise specified.
MV time before ECMO = mechanical Ventilation time before ECMO; PF ratio=PaO2/FiO2 (mm Hg) ratio.
AE-ILD, acute exacerbations of interstitial lung disease; CNS, central nervous system; COPD, chronic obstructive pulmonary disease; MV, 
mechanical ventilator; NA, not available; NMB, neuromuscular blocking agents; PaCO2, arterial carbon dioxide tension; Pao2, arterial oxygen 
tension; PEEP, positive end-expiratory pressure; SaO2, arterial oxygen saturation; SOFA, Sequential Organ Failure Assessment; TBIL, total bilirubin; 
VV-ECMO, venovenous extracorporeal membrane oxygenation.
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Online supplemental figure 7 presents the DCA 
showing the clinical utility of PRESERVE and RESP, 
along with ML models using all features and EHR 
features, to predict 90-day mortality in the test cohort. 

The results are presented as a plot with the selected risk 
thresholds (the degree of certainty of mortality per the 
physicians’ decision not to operate) plotted on the x-axis, 
and the benefits of the prediction model plotted on the 

Table 2  Assessment of predictive performance for prediction of 90-day mortality using EHR features in the internal validation 
set

Models AUROC AUPRC Sensitivity Specificity PPV NPV F1-score

LR 0.76 (0.67 to 
0.85)

0.79 (0.67 to 
0.89)

0.72 (0.60 to 
0.82)

0.70 (0.57 to 
0.83)

0.77 (0.66 to 
0.87)

0.65 (0.52 to 
0.78)

0.74 (0.64 to 
0.82)

SVM 0.76 (0.67 to 
0.85)

0.78 (0.65 to 
0.89)

0.81 (0.71 to 
0.90)

0.62 (0.48 to 
0.76)

0.74 (0.63 to 
0.84)

0.71 (0.56 to 
0.84)

0.78 (0.68 to 
0.85)

RF 0.81 (0.72 to 
0.88)

0.86 (0.77 to 
0.93)

0.83 (0.73 to 
0.92)

0.57 (0.44 to 
0.72)

0.73 (0.63 to 
0.83)

0.71 (0.57 to 
0.85)

0.77 (0.69 to 
0.85)

XGB 0.82 (0.73 to 
0.89)

0.87 (0.79 to 
0.93)

0.72 (0.59 to 
0.83)

0.70 (0.57 to 
0.83)

0.77 (0.65 to 
0.87)

0.65 (0.51 to 
0.78)

0.74 (0.64 to 
0.82)

MLP 0.77 (0.68 to 
0.85)

0.77 (0.65 to 
0.89)

0.70 (0.58 to 
0.81)

0.72 (0.60 to 
0.85)

0.78 (0.67 to 
0.88)

0.64 (0.52 to 
0.76)

0.74 (0.64 to 
0.82)

LGB 0.81 (0.71 to 
0.88)

0.84 (0.77 to 
0.91)

0.86 (0.77 to 
0.94)

0.60 (0.46 to 
0.74)

0.74 (0.63 to 
0.84)

0.76 (0.61 to 
0.89)

0.80 (0.71 to 
0.86)

All numbers are presented with 95% CI.
AUPRC, area under the precision-recall curve; AUROC, area under the receiver operating characteristic curve; LGB, light gradient boosting; 
LR, logistic regression; MLP, multilayer perceptron; NPV, negative predictive value; PPV, positive predictive value; RF, random forest; SVM, 
support vector machine; XGB, extreme gradient boosting.

Figure 1  Discrimination performance of prediction models with EHR features for 90-day mortality in the interval validation 
set. AUROC, area under receiver operating characteristics; EHR, electronic health record; LGB, light gradient boosting; LR, 
logistic regression; MLP, multilayer perceptron; RF, random forest; SVM, support vector machine; XGB, extreme gradient 
boosting.
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y-axis.15 The benefit of the ML model is greater than that 
of PRESERVE and RESP, particularly above 50% of the 
probability threshold.

In the external validation cohort, the predictive 
ability of the XGB model with EHR features to predict 
90-day mortality showed the highest performance with 
an AUROC of 0.75 (95% CI 0.64 to 0.85) and AUPRC 
of 0.74 (95% CI 0.58 to 0.86) (table  3). Models based 
on ML with EHR features also achieved a significantly 
higher AUROC than those of RESP (0.70; 95% CI 0.58 
to 0.82) and PRESERVE (0.67; 95% CI 0.56 to 0.78) 
(online supplemental figure 8). The XGB model showed 
an overall good calibration and clinical utility on the 
external validation dataset, as illustrated in online supple-
mental figures 9 and 10, respectively.

DISCUSSION
In this multicentre registry study, we developed ML algo-
rithms to predict 90-day mortality in patients undergoing 
VV-ECMO. The ML-based models, such as XGB and LGB, 
successfully predicted the risk of 90-day mortality and 
in-hospital mortality and outperformed conventional 
risk-scoring models, such as RESP and PRESERVE. The 
XGB model had the best performance among all models 
and a higher PPV and AUPRC than conventional scoring 
methods. This indicated that ML algorithms could 

accurately identify VV-ECMO candidates with a higher 
likelihood of death. Moreover, the developed models 
were validated using an external validation cohort and 
were further developed using readily available EHR data 
to implement the models in clinical practice quickly.

Critically ill patients with ARF come in various complex 
clinical situations, frequently impeding clinical outcome 
predictions. ML may overcome the difficulty in decision-
making during these difficult situations.29 Kang et al 
proved that ML algorithms increase the accuracy of 
mortality prediction for patients undergoing continuous 
renal replacement therapy when compared with those 
of conventional models such as Acute Physiology and 
Chronic Health Evaluation or Sequential Organ Failure 
Assessment.30 Regarding mortality prediction for patients 
undergoing ECMO, Ayers et al reported the potential 
for ML models to augment clinical decision-making for 
patients undergoing venoarterial-ECMO.18 However, 
there are no ML-based mortality prediction models for 
patients undergoing VV-ECMO (online supplemental 
table 6). To the best of our knowledge, this is the first 
study to use ML for mortality prediction in patients 
undergoing VV-ECMO.

As for discriminatory performance, the AUROC of 
the XGB (0.82) model for the prediction of 90-day 
mortality was 15.5% and 24.2% higher than that of 

Figure 2  ROC comparing 90-day mortality prediction models using EHR features with the RESP and PRESERVE scores 
in the internal validation set. ECMO, extracorporeal membrane oxygenation; PRESERVE, predicting death for severe 
acute respiratory distress syndrome on VV-ECMO; RESP, respiratory ECMO survival prediction; ROC, receiver operating 
characteristics; XGB, extreme gradient boosting.
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Figure 3  SHAP analysis of 90-day mortality prediction with EHR features in the internal validation set. The colour scheme in 
the plot uses red to represent higher features values and blue to represent lower feature values. On the x-axis, positive values 
indicate an increased risk of mortality, while negative values represent a decreased risk of mortality. EHR, electronic health 
record; SHAP, shapley additive explanations.

Figure 4  Calibration performance of 90-day mortality prediction models with EHR features in the internal validation set. 
BSL, Brier Score Loss; EHR, electronic health record; LGB, light gradient boosting; LR, logistic regression; MLP, multilayer 
perceptron; RF, random forest; SVM, support vector machine.
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PRESERVE (0.71) and RESP (0.66), respectively. Similar 
to our results, discrimination between survivors and 
non-survivors with PRESERVE scores was only moderate 
(AUROC of approximately 0.6) for most trials.7 The RESP 
score also has moderate discrimination between survi-
vors and non-survivors, although slightly better than the 
PRESERVE score (AUROC of approximately 0.7–0.75) in 
other studies.7 Enger et al developed a mortality predic-
tion model for VV-ECMO based on a hospital study of 304 
patients with an AUROC of 0.75–0.79, but no external 
validation has been reported.11 On the contrary, the 
AUROC of our XGB model achieved only a 7% decrease 
in performance when validated in the external validation 
cohort.

To develop models with readily available clinical data, 
a more practical model was devised comprising only 
available features from EHR systems without any prepro-
cessing. ML classifiers with sparse features achieved 
better performance than the conventional RESP or 
PRESERVE scoring models and even better performance 
than models with all features. The findings of our study 
show the potential of the model to be incorporated into 
existing EHR systems to serve as a prognostic tool and aid 
in the decision-making for ECMO initiation in patients 
with severe respiratory failure.

In response to the most recent data and ECMO trials, 
indications for the initiation of VV-ECMO are straight-
forward, and the list of contraindications has decreased 
considerably.8 However, several conditions outside the list 
for contraindications constitute very high-risk patients 
with a low likelihood of success with ECMO therapy.8 
Thus, each centre and provider involved in identifying 
the contraindication for ECMO initiation should take 
them into account in a separate manner. Our ML models 
could identify high-risk groups unlikely to survive even 
with ECMO therapy. The PPV of the XGB model was 0.77 

for 90-day mortality, where 77% of predicted mortality 
cases were confirmed at a 0.61 threshold (online supple-
mental table 7). The high precision of the developed 
model might help improve clinical judgement for 
rejecting high-risk ECMO candidates.31

Furthermore, the DCA helped clinicians to assess the 
potential clinical benefits of ECMO therapy and rule out 
patients with a low likelihood of success in the range of clin-
ical threshold probabilities.32 If physicians want to sacri-
fice sensitivity and increase specificity to gain a maximum 
PPV, they could change the probability threshold from 
40% to 70%. The developed model showed better effec-
tiveness than PRESERVE and RESP while maintaining a 
positive net gain, particularly above 50% of the proba-
bility threshold. The ML-based approach could be advan-
tageous in identifying which patients would benefit from 
ECMO cannulation, particularly during a pandemic 
when resources become more constrained, calling for 
more stringent contraindications.

Despite these advantages, our ML-based model has 
several limitations. First, the prediction model was not 
trained on different ethnic groups. The study has only 
been validated with a predominantly Northeast Asian 
population, which may depreciate the model perfor-
mance when applied to another ethnicity. Future research 
should involve different populations to improve and 
validate the model performance. Second, although our 
sample size was relatively large compared with previous 
studies, our cohort size was still insufficient to extrapolate 
the results to a certain extent. However, the model was 
developed using multi-institutional registry data from 16 
tertiary hospitals, in which patients with different charac-
teristics were included. Additionally, we demonstrated the 
validity and reliability of predictive mortality algorithms 
in an external validation cohort to avoid inflated results 
due to overfitting. Finally, this study did not measure the 

Table 3  Assessment of predictive performance for prediction of 90-day mortality using EHR features in the external 
validation set

Models AUROC AUPRC Sensitivity Specificity PPV NPV F1-score

LR 0.62 (0.49 to 
0.74)

0.6 (0.43 to 
0.75)

0.71 (0.56 to 
0.85)

0.48 (0.33 to 
0.63)

0.56 (0.42 to 
0.71)

0.63 (0.47 to 
0.80)

0.63 (0.50 to 
0.74)

SVM 0.64 (0.52 to 
0.76)

0.63 (0.46 to 
0.78)

0.71 (0.56 to 
0.85)

0.43 (0.28 to 
0.57)

0.54 (0.39 to 
0.67)

0.61 (0.43 to 
0.78)

0.61 (0.48 to 
0.72)

RF 0.69 (0.58 to 
0.80)

0.66 (0.50 to 
0.81)

0.84 (0.72 to 
0.94)

0.43 (0.28 to 
0.56)

0.58 (0.45 to 
0.70)

0.74 (0.56 to 
0.90)

0.69 (0.57 to 
0.78)

XGB 0.75 (0.64 to 
0.85)

0.74 (0.58 to 
0.86)

0.82 (0.69 to 
0.92)

0.6 (0.45 to 0.75) 0.66 (0.52 to 
0.79)

0.77 (0.62 to 
0.91)

0.73 (0.61 to 
0.83)

MLP 0.71 (0.59 to 
0.82)

0.70 (0.53 to 
0.84)

0.84 (0.72 to 
0.95)

0.33 (0.19 to 
0.47)

0.54 (0.41 to 
0.67)

0.68 (0.56 to 
0.75)

0.66 (0.54 to 
0.76)

LGB 0.66 (0.54 to 
0.78)

0.66 (0.49 to 
0.80)

0.89 (0.79 to 
0.97)

0.48 (0.33 to 
0.63)

0.62 (0.49 to 
0.75)

0.83 (0.67 to 
0.96)

0.73 (0.62 to 
0.82)

All numbers are presented with 95% CI.
AUPRC, area under the precision-recall curve; AUROC, area under the receiver operating characteristic curve; LGB, light gradient boosting; 
LR, logistic regression; MLP, multilayer perceptron; NPV, negative predictive value; PPV, positive predictive value; RF, random forest; SVM, 
support vector machine; XGB, extreme gradient boosting.
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developed model’s impact on clinical practice enhance-
ment. Further research is needed to evaluate the model’s 
usefulness in clinical environments.

Conclusions
The ML prediction model for 90-day mortality could 
accurately identify VV-ECMO candidates with a low 
probability of success. This model could provide valu-
able prognostic information and help decision-making, 
particularly with efficiently allocating the very limited 
number of ECMO machines. A larger dataset would 
improve the performance and validation of our current 
models in future studies.
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