Method | Here we use data from the UK Biobank (N=5505, aged from 45 to 73) to elucidate the effect of poor sleep (insomnia, snoring, daytime sleepiness and short sleep duration) on WMH load. The sleep variables were obtained using a digital questionnaire, whereas the WMH load was derived from automated segmentation of T2 FLAIR magnetic resonance images using the BIANCA tool in FSL.

Results | We show that age, snoring and daytime sleepiness significantly predict a higher WMH load (linear model, adjusted \( R^2=0.13, p<0.0001 \)). The WMH load of patients with potential sleep issues is significantly larger than those who reported no sleep issue (figure 1). Markers of poor sleep are associated with a higher body mass index (BMI) (linear model, adjusted \( R^2=0.041, p<0.0001 \)). A small but significant relationship exists among age, BMI and WMH load (linear model, adjusted \( R^2=0.14, p<0.0001 \)).

Finally, a sleep burden score summing poor sleep markers significantly predicted the WMH load, when controlling for cardiovascular factors (table 1). Removing the sleep burden score leads to a significant decrease in the power of the model (ANOVA, \( p=0.027 \)).

Discussion | This exploratory analysis confirms the impact of measures of poor sleep on cerebrovascular health, proposing a complex relationship between sleep and WMH loads involving cardiovascular features in a large ageing population. Further work will examine the wider implications of measures of poor sleep on cognition and brain function.

REFERENCES
1. Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. *BMJ* 2010;341:c3666.

### REM SLEEP AND DREAM REPORTS IN FREQUENT CANNABIS VERSUS NON-CANNABIS USERS

Ceri Bradshaw*, Rebecca Borsock, Matthew Taylor, Sophie Segust, Daniel Ford, Michelle Carr. Swansea University, Swansea, UK

Tetrahydrocannabinidiol (THC; one of the main psychoactive components of cannabis) has been shown to suppress REM sleep and affect sleep latency, although these findings are not consistently replicated. Cannabis use is also reported to affect dreaming frequency. Most studies investigating cannabis use and sleep have been laboratory-based, while only a limited body of research exists on dream occurrence and cannabis use. This study aimed to measure the frequency of participants sleeping at home in their usual surroundings, in order to assess effects of cannabis use compared to non-use, on objective sleep measures, dream reports, and self-reported anxiety, memory, and sleep quality. Eleven frequent cannabis users versus 8 non-users proceeded in their usual routines, and wore Hypnodyne Zmax portable sleep acquisition headbands (recording EEG, EOG and EMG) while sleeping at home over two consecutive nights. Participants gave dream reports in three awakennings, set at two-hourly intervals on each night, and once upon morning awakening, reporting dream content and subjective ratings of the dream’s bizarre-ness, emotionality, and sensory experience. In addition, participants completed problem cannabis use, lifetime and nightly cannabis use, PSQI, everyday memory and trait anxiety measures. No differences were reported by participants in sleep quality, anxiety or memory between the two groups; predictably, cannabis users reported significantly more problems in relation to use of the drug. Cannabis users demonstrated significantly longer sleep latency and less REM sleep overall; no other differences occurred in objective sleep measures between groups. Cannabis users reported higher bizarre-ness in their dreams, but no differences were reported in dream recall or other dream measures. It is noted that small sample sizes limit the generality of findings in this study. The procedure provides a useful paradigm and encouraging initial results, however, for contemporary research related to cannabis use and sleep in naturalistic conditions, in this ongoing project.

### ASSOCIATION BETWEEN SLEEP DURATION AND MACRONUTRIENT INTAKE IN PEOPLE WITH TYPE 2 DIABETES

Sahar Khodabakhsh*, Clare England, Rob Andrews, Laura Johnson. Centre for Exercise, Nutrition and Health Sciences, School for Policy Studies, University of Bristol, Bristol, UK; Exeter Medical School, University of Exeter, Exeter, UK

Introduction | Diet and sleep duration are both associated with Type 2 Diabetes (T2D). However, the longitudinal associations between macronutrient intake and sleep duration in people with T2D are unknown. We aimed to explore associations over 12 months in the Early-ACTID trial of usual care vs. a diet or diet+ physical activity interventions.

Method | Diet was assessed using 4-day estimated food diaries and average sleep duration in minutes was computed from self-reported usual sleep and wake times at baseline, 6- and 12-months post-intervention. Associations between percent total energy intake (%TEI) from fat, protein, carbohydrate and sleep duration were assessed using isoregemonic multiple linear regression substitution models, adjusting for TEI, and potential confounders.
Results Median (IQR) sleep duration was 8 hrs (7.5, 8.9) at baseline. The% TEI from each macronutrient (fat/carbohydrate/protein) at 0, 6 and 12 months was 35/42/18%, 34/43/18% and 33/44/19%. Substituting 1% TEI from protein or fat with carbohydrate was associated with 2.6 minutes shorter sleep cross-sectionally at 12-months but not at baseline or 6 months (figure 1). Higher carbohydrate intake (in place of protein or fat) was associated with a decrease in sleep duration by 1.5–2 minutes from 0–6 and 6–12 months. All longitudinal and cross-sectional macronutrient specific substitution models (but 12 months cross-sectional) suggested replacing protein with carbohydrate results in more sleep duration reduction (about one minute) than replacing fat with carbohydrate.

Discussion Lower protein and higher carbohydrate intake are consistently associated with shorter sleep duration. Replacing 5% protein with 5% carbohydrate results in 10–15 minutes less sleep duration 6 months later.

REFERENCE

PER3 POLYMORPHISM, SLEEP DURATION AND DEPRESSION SYMPTOMS IN A BRAZILIAN FAMILY-BASED COHORT, THE BAEPENDI HEART STUDY

Introduction Circadian rhythmicity is tightly regulated by clock genes. Polymorphic variations of the human PER3 gene have been shown to influence diurnal preference, sleep homeostasis and the development of mood disorders. However, it is unclear whether polymorphisms in this gene are associated with sleep duration and depression symptoms in real-life scenarios. We have investigated the relationship between sleep duration and mood traits among PER3 genotype groups in a Brazilian family-based cohort.

Methods Baependi is a small rural town in Brazil that provides an opportunity to study the influence of sleep circadian patterns in a highly admixed rural population. We studied 1,100 subjects (mean age±SD 47.6±15.3, 42% male) and evaluated the effects of the coding-region variable number tandem repeat polymorphism in PER3 (rs57875989) on mood (Hospital Anxiety and Depression Scale) and self-reported sleep habits (Pittsburgh Sleep Quality Index), controlling for age and sex, using a general linear model.

Results Our genotyping data showed that 33.5% of the subjects were homozygous for the shorter PER3 allele (4/4), 55.3% of participants were heterozygous (4/5) and 11.2% of subjects were homozygous for the longer allele (5/5). A main effect of PER3 genotype, sex and age was observed (p<0.01) on depression symptoms, as well as a significant interaction between sex and sleep duration ≤7 or >7 hours. The results revealed an increase in depression symptoms in the PER3(4/4) genotype compared to PER3(4/5). It was observed also an increase in depression symptoms according to the increase of age. The depression traits were also increased in women that have reported reduced sleep duration, despite controlling for age.

Discussion We observed associations between PER3 genotype, sleep duration and depression symptoms, suggesting that PER3 gene may be behaviourally relevant for mental health, especially for women under chronic sleep loss conditions.

CNPq – PVE; Academy of Medical Sciences/Newton International Fellowship