and TES on OSA severity assessed by the apnoea-hypopnoea index (AHI) and the Epworth Sleepiness Scale (ESS) as measure of subjective sleepiness. Random-effects models were used. Heterogeneity and between-study variance were assessed by I² and τ², respectively. The Robins-1 tool was utilised to assess the risk of bias for each study.

Results

Of the 41 clinical trials identified (n=1,853), data from 20 trials (n=895) could be pooled for meta-analysis (15 HNS [n=808], 5 TES [n=87]). Patient were predominantly middle aged (mean±SD 56.9±5.5 years), overweight (body mass index, BMI 29.1±1.5 kg/m²) with severe OSA (AHI 37.5±7.0 h⁻¹) and were followed-up for 6.9±4.0 months (HNS) and 0.2±0.4 months (TES), respectively. The AHI improved by -24.9 [95%CI -28.5, -21.2] h⁻¹ in HNS (χ² 79%, I² 82%) and by -16.5 [95%CI -25.1, -7.8] h⁻¹ in TES (χ² 7%, I² 43%; both p<0.001). The ESS was reduced by -5.0 (95%CI -5.9, -4.1) points (p<0.001). Nineteen of trials were non-randomised studies and were found to be at a moderate or serious risk of bias favouring treatment.

Discussion

Both invasive and transcutaneous electrical stimulation reduce OSA severity by a clinically relevant margin. HNS results in a clinically relevant improvement of symptoms. However, data are mainly based on non-randomised trials.

Abstract P053

MANUAL SCORING VS THE INBUILT AUTOMATED SCORING SYSTEM OF OVERNIGHT MULTI-CHANNEL SLEEP STUDIES (NOX T3); EVALUATING THE NEED TO MANUALLY SCORE FOR OSAHS

Liam O’Reilly*, Gemma Cramp, Michelle Goodlad. UHCW NHS Trust, Coventry, UK

10.1136/bmjresp-2019-bssconf.53

Introduction

Current practice at University Hospital Coventry (UHCW) is for qualified, peer reviewed physiologists to manually score multi-channel sleep studies. Apnoea-Hypopnoea Index (AHI) or Oxygen Desaturation Index (ODI) used to diagnose sleep disordered breathing and categorise severity. Analysis programs incorporated into device software allows parameters to be scored automatically (AS) without the need for manual scoring (MS) reducing waiting times of analysis reducing time from referral to treatment.

Aim

To determine the accuracy and reliability of the AS systems compared with MS and establish if this can be implemented to diagnose sleep disordered breathing.

Methods

121 multi-channel sleep studies (NOX T3) from the department’s Nocturnal diagnostic database (Version 5.1.3, Nox Medical, Reykjavik, Iceland). Each study initially MS were re-analysed using AS. The MS AHI governed the subgroup (Normal = AHI <5, Mild = AHI 5–14, Moderate = AHI 15–29, Severe = AHI >30). Agreement measurements used Wilcoxon signed rank test and Spearman’s rank-order correlation.

Results

Figure 1 manual scoring produced higher values across all sub-groups for AHI. Spearman’s coefficient showed a strong correlation in all parameters for severe sub-group, scoring of hypopneas showed weakest correlation. Significant differences were seen for moderate and severe AHI, no significant differences seen in normal and mild categories. 22 studies changed severity when AS performed, 12 changing clinical outcome.

Conclusion

AS is reliable scoring severe AHI compared to MS but underscored studies showing false negatives. No clinical differences in the outcomes despite statistical differences seen. AS AHI of 15/hour showed no change to clinical outcomes suggesting MS is not required. Current study shows MS required when AS shows AHI <15/hr as hypopneas are underscored producing false negatives. Larger sample sizes are needed to change clinical practice. Further research using different devices needed.

REFERENCES