Introduction Stores' questionnaire survey in 1998 found that UK medical students received a median of 20 minutes education about sleep. We asked whether this situation has improved.

Methods A cross sectional survey of 34 medical degree courses in the UK adapted from Stores '1998 questionnaire including time spent on sleep teaching medicine, sub-topics covered, and forms of assessment.

Results 25 (74%) UK medical schools responded to our survey. The time spent devoted to sleep medicine during undergraduate training was median 1.5 hours, mode <1 hour, and mean 3.2 hours (standard deviation = 2.6, figure 1). Only two schools had a sleep syllabus or dedicated compulsory module (8%), figure 2). When asked whether sufficient time is allotted to sleep and its disorders, 50% said yes, 38% said no and 13% were unsure. Free text comments made by our respondents had recurring themes: sleep medicine is typically subsumed into teaching by other specialities, with the result that course directors are uncertain about the details of provision; obstructive sleep apnoea is often identified as the key or only relevant sleep disorder; knowledge of sleep disorders is regarded as optional, and there is inertia about the prospect of change. However, a substantial minority of respondents are enthusiastic about making improvements to the sleep education they currently provide.

Discussion Sleep medicine remains a neglected topic despite agreement on the importance of sleep in general health. Obstacles to change are similar to those noted by Stores 20 years ago, including the views that 'sleep is not a core topic' or the 'curriculum is already too crowded'. Given that doctors are often the first point of contact for the public, we recommend that medical schools should establish and implement a sleep medicine curriculum. We suggest a simple syllabus, available on request.

REFERENCES

Abstract P068 Table 1 Results from pilot study of abstract 'sleep quality in athletes and exercisers'

<table>
<thead>
<tr>
<th></th>
<th>Competitive Elite Athletes</th>
<th>Competitive Non-Elite Athletes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants (%) (n)</td>
<td>33% (2)</td>
<td>66% (4)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>25</td>
<td>26.5</td>
</tr>
<tr>
<td>Gender (female)</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Type of sport (Team)</td>
<td>100%</td>
<td>25%</td>
</tr>
<tr>
<td>PSAS* (cognitive scale)</td>
<td>8</td>
<td>8.5</td>
</tr>
<tr>
<td>PSAS (cognitive scale)</td>
<td>21</td>
<td>17.75</td>
</tr>
<tr>
<td>Actual sleep time</td>
<td>7h10min</td>
<td>7hrs</td>
</tr>
<tr>
<td>Desired sleep time</td>
<td>7h45min</td>
<td>7h</td>
</tr>
<tr>
<td>Napping (Yes) (%)</td>
<td>50%</td>
<td>0%</td>
</tr>
<tr>
<td>Average fatigue level**</td>
<td>8</td>
<td>6.5</td>
</tr>
</tbody>
</table>

*PSAS – Pre-Arousal Sleep Scale
** As indicated by the Visual Analogue Fatigue Scale (VAFS)
INVESTIGATING THE IMPACT OF INSULIN RESISTANCE ON AGEING AND WELLBEING USING SLEEP AS A MODEL SYSTEM

1Gweei Zhu, 2*Michael Catt, 3Katie Anderson, 1David Gunn, 1Mark Birch-Machin, 1Dermatological sciences, Newcastle University, Newcastle Upon Tyne, UK; 2National Innovation Centre for Ageing, Newcastle Upon Tyne, UK; 3Department of Neurology, Royal Victoria Infirmary, Newcastle Upon Tyne, UK; 4Unilever RandD, Colworth Science Park, UK

Sleep controlled by the circadian rhythm is essential for many functions including energy conservation, memory consolidation and brain processing. Sleep duration and architecture changes with age. Sleep deprivation is very common in modern society and it has been identified as a major modifiable risk factor for many metabolic diseases.

A cross-sectional analysis was carried out on baseline data from the UK Biobank (n=82995). Sociodemographic, health-related and lifestyle information were collected using touchscreen questionnaires. Sleep and physical activity parameters were measured objectively using wrist-worn accelerometers (participants were aged 43–79 years). Sleep durations have been categorised into five groups. Short sleepers: (1) <5 hours/night, (2) 5–6 hours/night, (3) 6–7 hours/night; normal sleepers: (4) 7–8 hours/night; long sleepers: (5) >8 hours/night.

Short objective sleep duration was associated with male gender, older age and lower social status. A greater proportion of males with a sleep duration <5 hours/night have very high risk waist circumference (>102cm) compared to normal and long sleepers (22.1%, 14.9%, 11.7%, 10.4% and 10.2%, respectively). A similar pattern was also seen in females (60.0%, 50.6% 43.9%, 41.3% and 40.6%, respectively). The percentage of participants with cardio metabolic diseases is significantly lower in those who sleep between 6–8 hours/night compared to other short and long sleepers (34.8%, 27.7%, 26.0%, 25.9% and 29.1%, respectively). They also have better health ratings and less likely to have hypertension, diabetes and cardiovascular disease. Finally, those who sleep 6–7 hours were most physically active compared to other sleep groups. In conclusion, 6–8 hours of sleep per night is associated with better metabolic health and higher physical activity level. Short sleep duration is associated with male gender and social deprivation. Although, no causal link can be established from this study, the results can help to develop interventions for targeted groups to reduce the adverse effects of poor sleep.

References

Introduction The first night effect (FNE) is the phenomenon of reduced sleep quality during the first night in a new environment. It is hypothesised that this is due to asymmetrical levels of activity in the two hemispheres of the brain to remain more vigilant. We aimed to determine whether the first night’s stay in a hotel led to a reduction in sleep quality, and whether this could be mitigated by using one’s own pillowcase.

Methods Participants were recruited with ethical approval via a questionnaire including a list of exclusion criteria. Participants then spent one night in the hotel room, followed by four nights at home. During the hotel stay the ‘control group’ used the hotel pillowcase and the ‘intervention group’ used their own pillowcase. Sleep quality was self-reported using a visual analogue scale, which was then converted into numerical data. Sleep quality at the hotel was compared to the mean quality at home. Additionally, hotel sleep quality was compared between the control and intervention groups. All data was analysed using a paired two-tailed t-test.

P070 CAN FAMILIAR SENSORY INPUTS REDUCE THE FIRST NIGHT EFFECT WHEN SLEEPING IN AN UNFAMILIAR HOTEL ROOM?

1Victoria Earl, 1Mark Stratton, 1Jonathan Guo, 1Chang Kim, 1Mary Morrell. 1Clinical Research and Innovation Theme, Imperial College London, London, UK; 2Academic Unit of Sleep and Ventilation, National Heart and Lung Institutes, Imperial College London, Royal Brompton and Harefield National Health Service Foundation Trust, London, UK

10.1136/bmjresp-2019-bssconf.70