A SHORT DEVICE-BASED QUESTIONNAIRE ‘SLEEPHUBS CHECK-UP’ TO ENGAGE THE GENERAL POPULATION IN UNDERSTANDING MORE ABOUT THEIR SLEEP

Samantha Jackson*,1,2Neil Stanley,1,3,4Soren Berg, 1Charles Oulton,5Yizhou Yu. 1Sleep Hubs Ltd., Altrincham, UK; 2The Sleep Consultancy, Farnborough, UK; 3Medical Faculty, University of Lund, Sweden; 4Otolaryngology, Lovisenberg Hospital, Norway; 5Imperial College London

The increased number of people complaining of poor sleep puts a strain on health services where many doctors have neither the time or experience to deal with sleep problems. While it seems that we are good at offering potential solutions to the perceived problem of poor sleep, sleep questionnaires have historically not been written from the general public point of view, and often not easily accessible. The SleepHubs Check-up (SHC) is a 4–6 question device-based questionnaire designed for use by the layman as it is quick and easy to complete and focuses on three categories commonly associated with poor sleep: daytime sleepiness, snoring, and insomnia. Based on the results of the SHC, individuals are assigned into one of three categories: Probable good sleeper – no need to worry further, Possible reasonable sleeper but room for some improvement, Possible poor sleeper – possible sleep health issue, clinically relevant, further investigation required.

We undertook a pilot study to engage adults in the SleepHubs Check-up. The responses to the questions were automatically scored and individually weighted. The scores were compared with that of the Insomnia severity Index (ISI), Stop Bang and OSA probability based on the MAP index (MAPI).

One hundred adults (55% female) with an average age of 43 years and average BMI of 26.4 Kg/m² were recruited. Statistical analysis showed a positive correlation (>80%) between SHC and probability of Insomnia using the Insomnia severity Index. Additionally, the SHC score accurately identified individuals at risk of OSA when compared to Stop Bang and MAPI scores.

The SleepHubs Check-up assignment and categorisation criteria has shown to be effective and it is proposed could act as an instrument for use in both research and as a screening during Ramadan, compared to minimal sleep interruption post-Ramadan [p<0.001] (figure 1). There was no significant difference in mean percentage accuracy between during and after Ramadan, in either sex [females p=0.11; males p=0.80] (figure 2).

Discussion The main finding of this study was that sleep interruption due to Ramadan is associated with decreased speed of cognitive functioning, but not with a decrease in accuracy in students aged 18–25 years. These preliminary findings suggest that further research to investigate the effect of the effect of sleep interruption on memory and decision-making, which are key in exam-performance, would be of value. Other confounders such as hydration and chronotype should also be considered.

REFERENCES
tool for clinicians in the health care environment enabling quick identification and assignment of individuals that may have a sleep issue.

P075 DOES TOTAL DAILY SCREEN TIME AFFECT OUR SLEEP QUALITY?

1Oscar Benson Gaunt, 1Madelaine Miller, 1Devaki Nimalan*, 1Anežka Macey-Dare, 2Mary Morrell, 3Christopher-James Harvey. 1Clinical Research and Innovation Theme, Imperial College School of Medicine, London, UK; 2Academic Unit of Sleep and Ventilation, National Heart and Lung Institute, Imperial College London, London, UK; 3Nuffield Department of Clinical Neurosciences, University of Oxford, UK

10.1136/bmjresp-2019-bssconf.75

Background The percentage of adults spending >40hrs/week online has increased by 14% in the last decade. 1 Increased screen time is associated with poor sleep quality, which in turn influences memory and attention. This study tested the hypothesis that increased daily screen time was associated with significantly decreased sleep quality.

Methods Data was collected, with ethical approval, over three mornings (May 2019) from 399 randomly selected members of the public in South Kensington. A questionnaire with 15 questions, including age, gender, total daily screen time, sleep onset latency, and daytime alertness was used. A representative sample size of 369 was calculated, based on the daily footfall of Exhibition Road (32,422). 16 responses were excluded due to incomplete questionnaires, sleep disorders and jet lag.

Results Data from participants aged 18–34 was selected for analysis (n=223, 55.9% of the total responses). Respondents who answered ‘no’ to the question ‘Have you had enough sleep to feel alert?’ had a significantly higher mean total screen time than those who answered ‘yes’ (figure 1: Mean ±SEM, alert (‘yes’): 10±0.38 hours, not alert (‘no’): 11.2±0.45 hours, p=0.02). There was no significant correlation between the total daily screen time and sleep onset latency (Figure 2: spearman’s ρ=0.059 and p=0.38).

Conclusion The main finding of this study was that increased total daily screen time was associated with reduced daytime alertness, and a reduced sleep quality in members of the public aged 18–34 years. Although, screen time did not have a significant impact on sleep onset latency. This research could potentially raise awareness about the impact of screen time on sleep, and help inform future research into this area.

Acknowledgements With special thanks to our fellow Sleep CRI project members for their contribution to data collection.

REFERENCE

Abstract P075 Figure 1 A bar graph showing self-reported mean daily total screen time (mean±SEM) against the responses to the question ‘During the past week, have you received enough sleep to feel alert?’ in 18-34 year olds. There was a significantly higher mean daily screen time in individuals who responded ‘no’ (p=0.024)

P076 SIGNPOSTING FOR SNORING: DOES IT OPTIMISE USE OF GP TIME? ONLINE SURVEYS OF PATIENTS AND SLEEP-TRAINED DENTISTS

Adrian Zacher*, Emma Easton. Snorer.com, Bicester, UK

10.1136/bmjresp-2019-bssconf.76

Introduction 30% – 95% of adults search online for health information, and online systems are increasingly used to optimise GP clinical time. Intra-oral devices (MADs) are recommended by NICE for snoring, mild OSA and where PAP is refused or not complied with.

If SRBD services are to cope with increasing demand, signposting non-somnolent patients (without major co-morbidities) directly to sleep-trained dentists could offer a way to optimise both GP time and improve access to MADs.

Abstract P076 Figure 2 A bar graph showing self-reported mean daily total screen time in hours (mean±SEM) against the self-reported sleep onset latency in minutes in 18-34 year olds. No significant correlation was found between daily screen time and sleep onset latency (Spearman’s ρ=0.059 and p=0.38)