Online Supplement

Intravenous iron and chronic obstructive pulmonary disease: a

randomised controlled trial

Peter Santer, Anne McGahey, Matthew Frise, Nayia Petousi, Nick Talbot, Richard Baskerville, Mona Bafadhel, Annabel Nickol, Peter Robbins

Table of Contents

1.	Participant eligibility criteria
	Inclusion criteria
	Exclusion criteria 3
2.	Study design4
З.	Subgroup analyses5
4.	Tables and Figures7
	Figure S1. Self-recorded daily peripheral oxygen saturation measurements7
	Figure S2. Self-recorded daily peak expiratory flow rate measurements
	Figure S3. Primary and key secondary outcomes in iron-deficient and iron-replete participants 9
	Figure S4. Changes in 6-minute walk distance for individual study participants
	Table S1. Pulmonary function test results obtained at the screening visit 11
	Table S2. Additional baseline laboratory parameters 13
	Table S3. Temporal changes in additional laboratory parameters 14
	Table S4. Capillary blood gas analysis 15
5.	References

1. Participant eligibility criteria

Inclusion criteria

- Participants with a diagnosis of COPD, with at least moderate disease (grades II–IV of the GOLD criteria classification¹, i.e. FEV₁ < 80% predicted and FEV₁/FVC < 70%)
- Significant smoking history (i.e. > 15 pack years) or other definite cause of COPD
- Stable COPD for at least four weeks at study initiation (i.e. absence of exacerbation and no changes in respiratory medication)
- Able (in the investigator's opinion) and willing to comply with all study requirements
- Willing and able to give informed consent for participation in the study
- Male or female, aged 18 years or older

Exclusion criteria

- Female participants who are pregnant, lactating, planning pregnancy during the course of the study or of childbearing potential unless using effective contraception for the duration of the study
- Participants taking iron supplements (in the six weeks prior to study initiation) or who have had a blood transfusion (in the six months prior to study initiation)
- Iron overload, defined as ferritin > 300 μg/L
- Hypersensitivity to previous iron infusion
- Evidence of bacteremia or respiratory infection
- Significant renal or liver disease (as judged by the investigator)

2. Study design

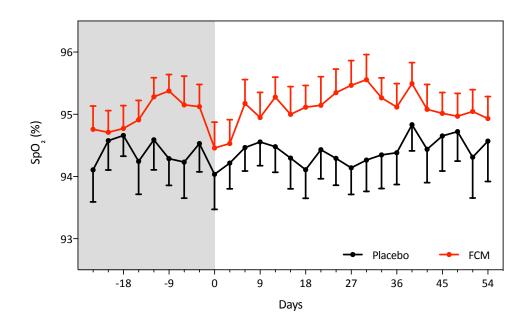
The original study design, as first published in the clinical trials registration (ISRCTN 09143837), aimed at determining whether intravenous iron attenuated the pulmonary arterial systolic pressure rise (PASP) with a long hypoxic exposure in COPD immediately following an infusion of iron compared to placebo. This study design was based on previous literature showing beneficial effects of intravenous iron in ameliorating pulmonary arterial systolic pressure increases during hypoxia in healthy volunteers.

This approach was subsequently fount to not be feasible and recruiting the necessary number of participants would not have been possible due to several limitations: It was determined, that exposing already hypoxic patients with chronic pulmonary disease to prolonged hypoxia was unlikely to be feasible in a large number of patients. Furthermore, preliminary attempts at measuring PASP in patients with COPD were complicated by the limitations of echocardiographic assessment of pulmonary pressure in these patients. Echocardiograms of sufficient quality could only be obtained in a small fraction of patients. Therefore, this approach would not have been feasible as a primary endpoint.

Given these limitations, the study protocol was changed to focus on a surrogate endpoint (peripheral oxygen saturation), which was supported by retrospective research.² The study protocol and registration were amended accordingly.

3. Subgroup analyses

As suggested in the review process, we report subgroup analyses for the primary (peripheral oxygen saturation) and key secondary outcomes (6-minute walk distance and modified MRC score) in iron-deficient and iron-replete participants, using a common definition of iron deficiency (ferritin < 100 μ g/L or ferritin 100–299 μ g/L with transferrin saturation < 20%).³ Using this definition, 33 (68.8%) participants in our study fulfilled the criteria for iron deficiency. In the iron-deficient subgroup, 16 participants received FCM and 17 received placebo; in the iron-replete subgroup, 8 participants received FCM and 7 received placebo.


<u>Peripheral oxygen saturation</u>: No significant differences in change of SpO₂ from baseline to week 1 between treatments were observed in iron-deficient and iron-replete participants. In the iron-deficient group, the change (mean \pm SD) in SpO₂ from baseline to week 1 was 0.6 \pm 1.5% in the FCM group and -0.4 \pm 1.8% in the placebo group (difference: 1.0%, 95% CI -0.2 to 2.2%, P = 0.102). In the iron-replete subgroup, SpO₂ changed by 0.0 \pm 1.8% in patients receiving FCM, and by -0.3 \pm 1.6% in patients receiving placebo (difference: 0.3%, 95% CI -1.6 to 2.2, P = 0.723, Figure S3, panel A).

<u>Six-minute walk distance (6MWD)</u>: Administration of FCM resulted in increased 6MWD in both iron-deficient and iron-replete participants. In iron-deficient participants, 6MWD increased by 19.7 ± 25.3 m from baseline to week 8 after FCM administration and by 6.9 ± 26.1 m after placebo (difference: 12.8 m, 95% CI –5.7 to 31.4 m, P = 0.169). In iron-replete participants, the change from baseline to week 8 was 32.5 ± 32.1 m after FCM and 19.2 ± 36.1 m after placebo, respectively (difference: 13.3 m, 95% CI –26.5 to 53.1 m, P = 0.479). In a linear mixed effects model, the average effect of FCM on 6MWD was 14.0 m (95% CI 2.2 to 25.9 m, P = 0.021) in iron-deficient participants and 8.6 m (95% CI –14.9 to 32.1 m, P = 0.458) in iron-replete participants (Figure S3, panel B).

<u>Modified MRC score</u>: In iron-deficient participants, mMRC scores at week 1 changed by -0.4 ± 0.8 from baseline after FCM, compared to 0.2 ± 0.5 after placebo administration (difference: -0.6, 95% CI -1.0 to -0.1, P = 0.029). In iron-replete participants, mMRC scores were reduced from baseline after both FCM (-0.5 ± 0.5) and placebo (-0.6 ± 0.5) with a difference of 0.1 (95% CI -0.5 to 0.7%, P = 0.800). In a linear mixed effect model, the average effect of FCM on mMRC was -0.35 (95% CI -0.71 to 0.00, P = 0.05) in iron-deficient participants and -0.42 (95% CI -0.87 to 0.03, P = 0.064) in iron-replete participants (Figure S3, panel C).

4. Tables and Figures

Participants measured and recorded their peripheral oxygen saturation daily, starting at the screening visit. Day 0 marked the baseline visit. Self-measured oxygen saturations did not differ significantly between the two groups (P = 0.170 for the effect of iron administration). Data points represent the average of the three preceding days. Statistical comparison was performed by linear mixed effects modelling as described in the main manuscript; pre-baseline data (shaded area) were not included in the analysis. All data are expressed as mean \pm standard error. FCM: ferric carboxymaltose.

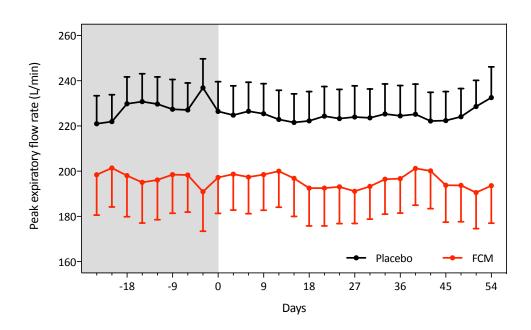


Figure S2. Self-recorded daily peak expiratory flow rate measurements

Participants measured and recorded their peak expiratory flow rates (best out of 3 attempts) daily, starting at the screening visit. Day 0 marked the baseline visit. Peak expiratory flow rates did not differ significantly between the two groups (P = 0.765 for the effect of iron administration). Data points represent the average of the three preceding days. Statistical comparison was performed by linear mixed effects modelling as described in the main manuscript; pre-baseline data (shaded area) were not included in the analysis. All data are expressed as mean ± standard error. FCM: ferric carboxymaltose.

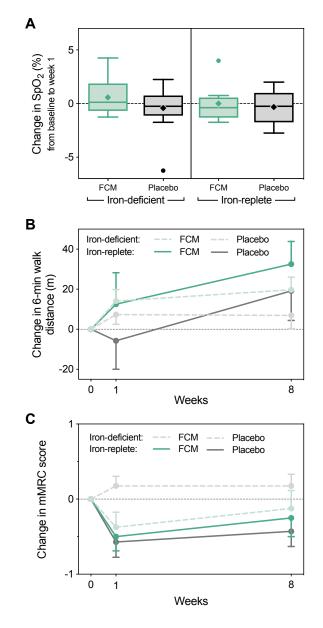
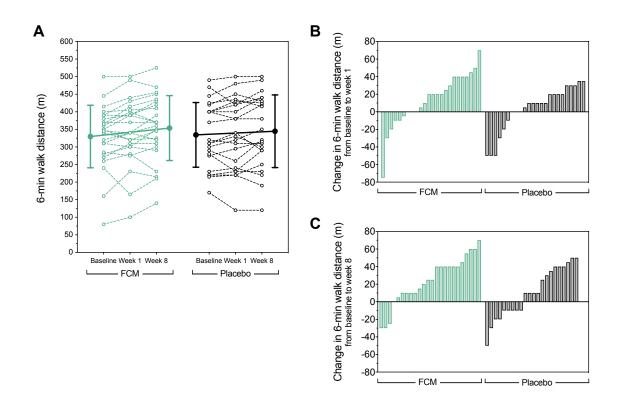



Figure S3. Primary and key secondary outcomes in iron-deficient and iron-replete participants

Primary (A) and key secondary endpoints (B and C) are shown for subgroups of iron-deficient and iron-replete participants. All data are expressed as mean ± standard error. FCM: ferric carboxymaltose.

Figure S4. Changes in 6-minute walk distance for individual study participants

Six-minute walk distances are shown at baseline, week 1 and week 8 for each individual study participant (A, dashed lines); solid lines represents the change in mean walk distance from baseline to week 8 (error bars represent standard deviations). Relative changes in 6-minute walk distance from baseline to week 1 (B) and baseline to week 8 (C) are shown for each individual study participant. FCM: ferric carboxymaltose.

Parameter, unit		FCM (n = 24)	Placebo (n = 24)	P value
Peak expiratory flow rate (PEFR)	Measured, L min ⁻¹	246.6 ± 92.5	277.6 ± 74.1	0.205
	% predicted	60.3 ± 19.0	63.9 ± 18.8	0.518
Forced expiratory volume in one second (FEV ₁)	Measured, L	1.16 ± 0.50	1.35 ± 0.38	0.162
	% predicted	48.0 ± 17.6	49.8 ± 16.9	0.714
Forced vital capacity (FVC)	Measured, L	2.56 ± 0.79	3.37 ± 0.84	0.001
	% predicted	83.0 ± 21.3	95.2 ± 19.9	0.044
Vital capacity (VC)	Measured, L	2.74 ± 0.84	3.48 ± 0.83 ª	0.004
	% predicted	88.1 ± 22.5	96.8 ± 17.4 ª	0.145
FEV ₁ /VC ratio	Measured, %	43.2 ± 9.9	39.1 ± 10.8 °	0.177
FEV ₁ /FVC ratio	Measured, %	44.8 ± 9.0	40.4 ± 10.2	0.116
Functional residual capacity (FRC)	Measured, L	5.11 ± 1.54 ^b	5.01 ± 1.50 ^c	0.838
	% predicted	156.5 (133.2–174.7) ^b	147.8 (123.7–175.2) ^c	0.616
Residual volume (RV)	Measured, L	4.59 ± 1.51 ^b	3.93 ± 1.27 ^c	0.169
	% predicted	191.0 (163.2–219.0) ^b	168.4 (120.0–198.5) ^c	0.107
Total lung capacity (TLC)	Measured, L	7.43 ± 1.50 ^b	7.59 ± 1.88 ^c	0.773
	% predicted	123.5 (118.7–133.2) ^b	124.8 (107.4–133.7) ^c	0.639
RV/TLC ratio	Measured, %	61.1 ± 10.8 ^b	51.1 ± 6.9 °	0.002

Table S1. Pulmonary function test results obtained at the screening visit

11

Parameter, unit		FCM (n = 24)	Placebo (n = 24)	P value
Airway resistance (R _{aw})	Measured, kPa L ⁻¹ s ⁻¹	0.42 (0.32–0.56) ^b	0.43 (0.32–0.56) ^c	0.802
Specific airway conductance (sG _{aw})	Measured, kPa ⁻¹ s ⁻¹	0.50 (0.27–0.61) ^b	0.45 (0.39–0.55) ^d	0.545
	% predicted	52.0 (24.4–82.3) ^d	50.5 (39.7–56.7) ^e	0.886
Alveolar volume (VA)	Measured, L	4.24 ± 1.18 ª	5.06 ± 1.22 ª	0.025
	% predicted	74.8 ± 14.0 ^a	81.8 ± 13.0 ª	0.086
Transfer factor for carbon monoxide (T _{LCO})	Measured, mmol min ⁻¹ kPa ⁻¹	3.80 ± 1.13 ª	3.80 ± 1.28 ^a	0.995
	% predicted	50.1 ± 14.2 °	46.9 ± 15.3 °	0.467
Transfer coefficient for carbon monoxide (K_{co})	Measured, mmol min ⁻¹ kPa ⁻¹ L ⁻¹	0.92 ± 0.22 ^a	0.78 ± 0.27 ª	0.057
	% predicted	67.6 ± 18.8 ª	57.5 ± 15.2 °	0.051

Pulmonary function tests were performed on all study participants at the screening visit unless results from spirometry or a full pulmonary function tests were available within one year prior to the screening visit. Data are reported as mean \pm standard deviation, if normally distributed, or median (interquartile range), if not normally distributed. Statistical analysis was performed by independent samples Student t-test (normally distributed data) or Mann-Whitney U test (non-normally distributed data). Missing data: ^a n = 23, ^b n = 19, ^c n = 17, ^d n = 16, ^e n = 14. FCM: ferric carboxymaltose.

Parameter, unit	FCM (n = 24)	Placebo (n = 24)	P value	
Hematological markers				
Haematocrit, %	43.6 ± 3.1^{a}	43.3 ± 3.8 °	0.778	
White cell count, x 10 ⁹ /L	6.86 (6.36–8.08) ^a	8.14 (6.86–11.28) ^a	0.039	
Neutrophil count, x 10 ⁹ /L	4.42 (4.03–5.55)ª	5.40 (4.52–7.86) ^a	0.023	
Eosinophil count, x 10 ⁹ /L	0.18 ± 0.10 ª	0.19 ± 0.14 ª	0.739	
Platelet count, x 10 ⁹ /L	255 (227–278) ^a	261 (221–323) ^a	0.345	
Serum biochemistry				
Sodium, mmol/L	138.4 ± 2.0	138.6 ± 3.8	0.848	
Potassium, mmol/L	4.1 ± 0.4	4.2 ± 0.4	0.392	
Phosphate, mmol/L	0.98 ± 0.17	0.97 ± 0.13	0.656	
Urea, mmol/L	5.1 ± 1.9	6.2 ± 1.8	0.041	
Creatinine, µmol/L	67.5 ± 14.9	79.3 ± 18.0	0.018	
Glucose, mmol/L	5.5 ± 1.0 ^b	5.6 ± 1.2 ^b	0.805	
Bilirubin, μmol/L	9.0 (6.3–11.5)	8.0 (6.0–15.0)	0.942	
Alanine aminotransferase, IU/L	18.4 ± 6.6	19.5 ± 8.5	0.611	
Alkaline Phosphatase, IU/L	72.4 ± 13.5	77.7 ± 25.3	0.366	
Albumin, g/L	36.7 ± 2.8	36.4 ± 2.6	0.752	

Table S2. Additional baseline laboratory parameters

Data are reported as mean \pm standard deviation, if normally distributed, or median (interquartile range), if not normally distributed. Statistical analysis was performed by independent samples Student t-test (normally distributed data) or Mann-Whitney U test (non-normally distributed data). Missing data: ^a n = 23, ^b n = 22. FCM: ferric carboxy-maltose.

Parameter, unit	FCM (n = 24)			Placebo (n = 24)			P value
	Baseline	Week 1	Week 8	Baseline	Week 1	Week 8	
Hematological markers							
Hematocrit, %	43.6 ± 0.6^{a}	42.5 ± 0.7 ª	43.6 ± 0.7 ª	43.3 ± 0.8 ª	42.7 ± 0.9 ª	43.0 ± 0.9 ª	0.478
Erythropoietin, mIU/mL	8.1 ± 0.7	7.8 ± 0.6	7.6 ± 0.8	9.9 ± 0.9	9.8 ± 1.3	9.8 ± 1.2	0.540
White cell count, x 10 ⁹ /L	7.7 ± 0.6 ª	7.2 ± 0.6^{a}	7.6 ± 0.5^{a}	9.0 ± 0.6^{a}	8.4 ± 0.6^{a}	9.0 ± 0.4^{a}	0.152
Neutrophil count, x 10 ⁹ /L	5.2 ± 0.6^{a}	4.8 ± 0.5^{a}	5.0 ± 0.5^{a}	6.3 ± 0.5^{a}	5.7 ± 0.5 ª	6.3 ± 0.4^{a}	0.167
Eosinophil count, x 10 ⁹ /L	0.18 ± 0.02^{a}	0.18 ± 0.02 ^a	0.19 ± 0.02 ª	0.19 ± 0.03^{a}	0.19 ± 0.02 ª	0.17 ± 0.03 ª	0.689
Platelet count, x 10 ⁹ /L	261 ± 11 ª	254 ± 14 ª	270 ± 17^{a}	304 ± 30 ª	296 ± 27 ª	290 ± 24 ª	0.294
Serum biochemistry							
Sodium, mmol/L	138.4 ± 0.4	138.3 ± 0.5	138.5 ± 0.4	138.6 ± 0.8	138.4 ± 0.5	138.1 ± 0.5	0.870
Potassium, mmol/L	4.1 ± 0.1	4.0 ± 0.1	3.9 ± 0.1	4.2 ± 0.1	4.1 ± 0.1	4.2 ± 0.1	0.229
Urea, mmol/L	5.1 ± 0.4	4.8 ± 0.3	5.1 ± 0.4	6.2 ± 0.4	6.1 ± 0.4	6.3 ± 0.4	0.084
Creatinine, µmol/L	67.5 ± 3.1	65.0 ± 3.2	67.3 ± 2.9	79.3 ± 3.7	78.8 ± 3.4	80.0 ± 3.9	0.005
Glucose, mmol/L	5.5 ± 0.2 ^b	5.8 ± 0.4 ^b	5.6 ± 0.4 ^b	5.6 ± 0.3 ^b	5.4 ± 0.3 ^b	5.4 ± 0.2 ^b	0.238
Bilirubin, μmol/L	9.1 ± 0.6	8.1 ± 0.5	9.0 ± 0.7	10.5 ± 1.3	10.2 ± 1.2	10.0 ± 1.1	0.064
Alanine aminotransferase, IU/L	18.4 ± 1.3	23.6 ± 1.9	19.3 ± 1.4	19.5 ± 1.7	18.5 ± 1.7	20.1 ± 1.7	0.001
Alkaline Phosphatase, IU/L	72.4 ± 2.7	74.6 ± 2.8	81.4 ± 3.0	77.7 ± 5.2	75.0 ± 5.3	76.7 ± 5.4	0.005
Albumin, g/L	36.7 ± 0.6	35.6 ± 0.5	36.0 ± 0.6	36.4 ± 0.5	35.3 ± 0.6	35.3 ± 0.6	0.880

Table S3. Temporal changes in additional laboratory parameters

^{*a, b*} Results are reported only for participants with a valid data point at each visit (^{*a*} n = 23, ^{*b*} n = 22); cases with partially missing data were excluded from this table, but not from the statistical model. All data are reported as mean ± standard error. Statistical analysis was performed by linear mixed effects modelling; p values are reported for the fixed effect of "status post FCM infusion". FCM: ferric carboxymaltose.

Table S4. Capillary blood gas analysis

Parameter, unit	FCM ^a (n = 24)			Placebo ^b (n = 24)			P value
	Baseline	Week 1	Week 8	Baseline	Week 1	Week 8	
рН	7.45 ± 0.01	7.45 ± 0.00	7.45 ± 0.00	7.45 ± 0.01	7.45 ± 0.01	7.44 ± 0.01	0.527
Partial pressure of CO ₂ (PCO ₂), kPa	4.85 ± 0.10	4.95 ± 0.11	4.99 ± 0.08	4.76 ± 0.09	4.81 ± 0.10	5.00 ± 0.13	0.968
Partial pressure of O ₂ (PO ₂), kPa	9.35 ± 0.24	9.14 ± 0.26	9.19 ± 0.23	9.37 ± 0.25	9.27 ± 0.23	9.04 ± 0.17	0.519
Oxygen saturation (SO ₂), %	94.6 ± 0.4	94.4 ± 0.4	94.4 ± 0.4	94.6 ± 0.4	94.4 ± 0.3	94.1 ± 0.3	0.640
Base Excess, mmol/L	1.31 ± 0.43	1.62 ± 0.33	2.11 ± 0.36	0.92 ± 0.43	1.00 ± 0.44	1.40 ± 0.49	0.378
Bicarbonate (HCO₃) , mmol/L	25.5 ± 0.4	25.8 ± 0.3	26.2 ± 0.3	25.2 ± 0.4	25.2 ± 0.4	25.6 ± 0.4	0.441

^{*a, b*} Results are reported only for participants with a valid data point at each visit (^{*a*} n = 22, ^{*b*} n = 23); cases with partially missing data were excluded from this table, but not from the statistical model. All data are reported as mean \pm standard error. Statistical analysis was performed by linear mixed effects modelling; *p* values are reported for the fixed effect of "status post FCM infusion". FCM: ferric carboxymaltose.

5. References

- 1. Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. Am J Respir Crit Care Med 2017;195:557-82.
- 2. Nickol AH, Frise MC, Cheng HY, et al. A cross-sectional study of the prevalence and associations of iron deficiency in a cohort of patients with chronic obstructive pulmonary disease. BMJ Open 2015;5:e007911.
- 3. Anker SD, Comin Colet J, Filippatos G, et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med 2009;361:2436-48.