
  1Gyselinck I, et al. BMJ Open Resp Res 2021;8:e000806. doi:10.1136/bmjresp-2020-000806

To cite: Gyselinck I, 
Janssens W, Verhamme P, 
et al. Rationale for 
azithromycin in COVID-19: 
an overview of existing 
evidence. BMJ Open Resp Res 
2021;8:e000806. doi:10.1136/
bmjresp-2020-000806

 ► Additional material is 
published online only. To view 
please visit the journal online 
(http:// dx. doi. org/ 10. 1136/ 
bmjresp- 2020- 000806).

Received 20 October 2020
Revised 27 November 2020
Accepted 30 November 2020

1Respiratory Diseases, KU 
Leuven University Hospitals, 
Leuven, Flanders, Belgium
2Department CHROMETA - 
Research group BREATHE, 
KU Leuven, Leuven, Flanders, 
Belgium
3Cardiovascular Diseases, KU 
Leuven University Hospitals, 
Leuven, Flanders, Belgium
4Centre for Molecular and 
Vascular Biology, KU Leuven, 
Leuven, Flanders, Belgium

Correspondence to
Dr Iwein Gyselinck;  
 iwein. gyselinck@ kuleuven. be

Rationale for azithromycin in 
COVID-19: an overview of 
existing evidence

Iwein Gyselinck    ,1,2 Wim Janssens,1,2 Peter Verhamme,3,4 Robin Vos1,2

Respiratory infection

© Author(s) (or their 
employer(s)) 2021. Re- use 
permitted under CC BY- NC. No 
commercial re- use. See rights 
and permissions. Published by 
BMJ.

ABSTRACT
Azithromycin has rapidly been adopted as a repurposed 
drug for the treatment of COVID-19, despite the lack of 
high- quality evidence. In this review, we critically appraise 
the current pharmacological, preclinical and clinical 
data of azithromycin for treating COVID-19. Interest in 
azithromycin has been fuelled by favourable treatment 
outcomes in other viral pneumonias, a documented 
antiviral effect on SARS- CoV-2 in vitro and uncontrolled 
case series early in the pandemic. Its antiviral effects 
presumably result from interfering with receptor mediated 
binding, viral lysosomal escape, intracellular cell- 
signalling pathways and enhancing type I and III interferon 
expression. Its immunomodulatory effects may mitigate 
excessive inflammation and benefit tissue repair. Currently, 
in vivo reports on azithromycin in COVID-19 are conflicting 
and do not endorse its widespread use outside of clinical 
trials. They are, however, mostly retrospective and 
therefore inherently biased. The effect size of azithromycin 
may depend on when it is started. Also, extended follow- 
up is needed to assess benefits in the recovery phase. 
Safety data warrant monitoring of drug–drug interactions 
and subsequent cardiac adverse events, especially with 
hydroxychloroquine. More prospective data of large 
randomised controlled studies are expected and much- 
needed. Uniform reporting of results should be strongly 
encouraged to facilitate data pooling with the many 
ongoing initiatives.

INTRODUCTION
Since December 2019, the pandemic spread 
of the new virus SARS- CoV2 has affected 
over 50 million people.1 COVID-19—the 
disease caused by this virus—has killed over 
one million people in these past few months. 
Tremendous progress has already been made 
in the understanding of the disease. Still, only 
a few interventions have proven clinically 
beneficial and, besides thromboprophylaxis, 
these are mostly reserved for selected patients 
with an advanced disease stage. Their impact 
on the global disease burden, therefore, 
remains limited.2

A high initial viral load3 and occur-
rence of a disproportional inflammatory 
response thereafter, the so- called cytokine 
storm,4 relate to adverse outcomes and are 

potentially modifiable. Hence, they are 
the target of most currently considered 
therapeutic strategies. Interference with 
the viral cycle is pursued through (1) inhi-
bition of viral cell entry with TMPRRS2 
inhibiting molecules such as camostat or 
aprotinin, (2) inhibition of viral lysosome 
escape with molecules as hydroxychlo-
roquine, (3) antiretroviral drugs such as 
lopinavir/ritonavir that interfere with post-
translational processing through the main 
protease and (4) inhibition of viral RNA- 
dependent RNA- polymerase with remdesivir 
or favipiravir.5 The excessive host’s inflam-
matory response is mitigated by (1) broad- 
spectrum molecules as dexamethasone6 
or (2) targeted drugs as tocilizumab (anti- 
interleukin-6 (IL-6)), anakinra (anti- IL-1) 
or baricitinib (janus kinase inhibitor).7 
Finally, anticoagulants are effectively used 
to counter the inflammation- induced hyper-
coagulative state.8 Overall, time pressure 
has sparked a special interest into the repur-
posing of marketed or late stage molecules 
for COVID-19, parallel to the development 
of new and more selective drugs.5 6

A repurposing drug candidate of special 
interest is azithromycin. Azithromycin is 
a macrolide antibiotic with a broad gram- 
positive and gram- negative spectrum. 
Moreover, it has well- documented anti- 
inflammatory and immunoregulatory 
effects, through modulation of both the 
innate and adaptive immune response.9 
These are effective to treat chronic inflam-
matory disorders such as diffuse bron-
chiolitis, post- transplant bronchiolitis, 
non- eosinophilic asthma or rosacea. Azith-
romycin has also been associated with 
improved outcome in other viral pneumo-
nias, such as influenza10 or rhinovirus,11 and 
in patients with acute lung injury admitted 
to the Intensive Care Unit (ICU).12 This has 
in some centres led to the early adoption 
of azithromycin in routine COVID-19 care, 
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further fuelled by reports of in vitro activity against 
SARS- CoV-2, and a suggested benefit in non- controlled 
case series early on in the SARS- CoV-2 pandemic. While 
more data of randomised controlled studies are eagerly 
awaited, we comprehensively review the rationale of its 
use against SARS- CoV-2, its window of opportunity and 
its possible limitations.

PATHOPHYSIOLOGY OF COVID-19
Normal antiviral response
SARS- CoV-2 is a positive- sense single stranded envel-
oped RNA β-coronavirus that spreads through aero-
sols, droplets, respiratory secretions and direct 
contact.13 One can distinguish different disease stages 
(figure 1).14 (A) After transmission, SARS- CoV-2 binds 
and enters respiratory epithelial cells through the ACE 
II (ACE2) receptor.15 The quick viral replication and 
high cytopathogenicity cause a strong release of danger 
signals, (B) Binding of these danger signals to specific 
pattern recognition receptors induces an innate anti-
viral immune response and clinical disease becomes 
apparent,14 (C) In the following days an adaptive 
immune response is gradually mounted, comprising a 
T- helper-1 (Th1) and often also a Th2 activation.16 In the 
latter case, anti- SARS- CoV-2 IIgM and IgG antibodies 
appear and their levels correlate with disease severity.17 
Assuming the patient is able to overcome the infection, 
a convalescent phase commences and (D) Inflamma-
tory markers decrease and, in most patients, pulmonary 
infiltrates slowly wane.

Excessive inflammatory response: cytokine storm
Severe COVID-19 is characterised by a disproportional 
inflammatory response.18 This has been attributed to 
multiple traits of SARS- CoV-2, some in analogy with 

SARS- CoV and Middle East respiratory syndrome 
(MERS) (figure 2).

First, SARS- CoV-2 interferes with the innate antiviral 
immune response. Normally, two different antiviral 
pathways are activated. On the one hand, interferon 
(IFN) regulatory factors increase transcription of 
mainly type I and type III IFN, which stimulate natural 
killer cells and CD8 +cytotoxic T- lymphocytes.19 20 On 
the other hand, nuclear factor-κB (NF-κB) signalling 
promotes monocyte activation and their differentiation 
into M1 macrophages.20 21 These release proinflamma-
tory cytokines and promote inflammatory T- cell (Th1/
Th17) activation.20–22 SARS- CoV-2 skews the innate 
response towards macrophage activation. It suppresses 
type I and III IFN- related gene transcription, thereby 
favouring NF-κB activation. This impairs the recruit-
ment of cytotoxic effector T- lymphocytes16 23 and causes 
abundant cytokine release and inflammasome forma-
tion.20 24 In severely ill and ICU- admitted patients, 
macrophage- related cytokines IL-6, IL-10 and TNFα 
are indeed consistently elevated compared with milder 
cases.18 25

Second, excessive release of cytokines increases 
the expression of T- cell exhaustion markers, like 
programmed death 1 and T cell immunoglobulin 
and mucin domain- containing protein 3 (Tim-3).26 
Together with IL-6 induced lymphocyte apoptosis and 
necrosis,22 27 T- cell exhaustion further dampens the 
cellular immune response. Lymphopenia is frequent 
and correlates with inflammation markers and disease 
severity.28

Third, binding of SARS- CoV-2 to ACE2 receptors, 
and their subsequent internalisation, reduces ACE2- 
mediated angiotensin II breakdown. The increased 
angiotensin II levels enhance the inflammatory 
response, activate endothelial cells and locally increase 

Figure 1 Chronology of the different disease- stages of COVID-19.
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vascular permeability.29 This promotes coagulation by 
activation of the kallikrein- bradykinin system. A hyper-
coagulable state importantly contributes to COVID-19 
morbidity and mortality.8 30

Finally, the excessive inflammation causes concern of 
pulmonary fibrosis as a possible late COVID-19 compli-
cation.31 In analogy with SARS and MERS, fibrotic 
changes have indeed been recognised in autopsy 
studies and may be associated with increased expres-
sion of tumour growth factor beta (TGF-β) and connec-
tive tissue growth factor.32 At this stage, it is still unclear 
who will recover, and who will proceed to uncon-
trolled cellular proliferation and persistent fibrotic 
remodelling.

RATIONALE FOR AZITHROMYCIN USE IN COVID-19
Pharmacological profile
Azithromycin is a 15- membered- ring macrolide of the 
azalide class. It is safe and, besides mild gastrointestinal 
side effects, usually well tolerated.33 QT- prolongation and 
cardiotoxicity are a concern, especially when combined 
with other QT- prolonging drugs. However, while clearly 
demonstrated for the 14- membered- ring macrolides such 
as erythromycin and clarithromycin, few reports relate 
azithromycin to cardiac adverse events. As opposed to 
14- membered- ring molecules, azithromycin is not metab-
olised by cytochrome P450 (CYP450), which accounts for 
a more favourable drug–drug interaction profile.34

Azithromycin is rapidly absorbed after oral intake 
and has a long half- life. Its large volume of distribution 
is due to a high intracellular accumulation, with tissue 
concentrations up to a 100- fold higher than in plasma.35 
The uptake is particularly high in leukocytes,36 but 
also in epithelial cells and fibroblasts. Intracellularly, it 

Figure 2 Azithromycin effects in the pathophysiology of COVID-19 after receptor- mediated endocytosis, both viral (PAMP) 
and host released (DAMP) molecules trigger antiviral pathways. SARS- CoV-2 induces a strong NF- KB pathway activation but 
supresses interferon- related gene transcription. This promotes macrophage activation and the release of pro- inflammatory 
cytokines and supresses an effective cellular immune answer. In severe COVID-19, this imbalanced immune answer causes 
a so called ‘cytokine storm’. Neutrophils are drawn to the site of inflammation. Together with activated endothelial cells 
they contribute to hypercoagulation. They also contribute to a strong fibroblast activation, raising the concern for fibrotic 
complications in the long term. Current data shows that an effective Th2 response is more likely to occur in severe infection. 
It remains uncertain whether immunoglobulin release is beneficial or rather enhances the acute inflammation by mechanisms 
such as antibody- dependent enhancement. Azithromycin stimulatory and inhibitory immunomodulatory effects. 
Ang II, angiotensin I; CCL5, C- C motif chemokine ligand 5 (=RANTES); CTL, cytotoxic T- cell; CXCL, C- X- C motif chemokine 
ligand; DAMP, danger associated molecular pattern, GMCSF, granulocyte macrophage colony stimulating factor; IFN, 
interferon, IL, interleukin; IRF, interferon inducible factors; NET, neutrophil extracellular traps; NF- KB, nuclear factor kappa 
beta; NK, natural killer cell; NLRP3, nod- like receptor pyrin domain containing 3; P2RX, purinergic receptor P2X; PAMP, 
pathogen associated molecular pattern; PDGF, platelet- derived growth factor; RIG, retinoic acid inducible gene 1; Th, T helper 
cell; TLR, toll like receptor; TNF, tumour necrosis factor.
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has an affinity for acidic organelles such as lysosomes. 
Azithromycin also crosses the blood–brain barrier and 
concentrates in central nervous system tissue.37 This is 
noteworthy as there is increasing awareness of neurolog-
ical complications of COVID-19, due to infiltration and 
activation of residing inflammatory cells and possibly 
direct viral neurotropism.38–40

In vitro data on the inhibitory concentrations of 
azithromycin on SARS- CoV-2 and other viruses have 
recently been summarised elsewhere.41 However, these 
data are scarcely replicated and far from an in vivo 
pharmacokinetic- pharmacodynamic target. On the other 
hand, azithromycin accumulation in leukocytes ensures 
effective delivery to sites of infection and inflammation. 
In vivo lung tissue homogenates reach concentrations 
well above the reported 90% effective concentration 
after 3 days of oral therapy with 500 mg azithromycin.35 
Similar regimens are approved and long used to treat 
bacterial gastroenteritis and respiratory tract infections. 
Slightly longer treatment durations of 5 up to 8 days were 
evaluated in cohorts studies assessing the effect of azith-
romycin in hospitalised patients with influenza10 or ICU 
patients with acute lung injury.12 42

Antiviral effects
Azithromycin has direct and indirect antiviral activity in 
bronchial epithelial cells43 and other host cells. In addi-
tion to SARS- CoV-2, this has also been shown for influ-
enza, rhinovirus, dengue, ebolavirus, parainfluenza virus, 
zika virus and enterovirus.41 44

There are multiple mechanisms for azithromycin’s 
antiviral effect. For host- cell entry, the prerequisite 
binding of the SARS- CoV-2 viral spike protein to ACE2 
has been repeatedly described. Virtualised mechanical 
modelling techniques demonstrated that azithromycin 
may interfere due to its affinity with the binding interac-
tion point of the spike protein and ACE2.45 Also, azithro-
mycin may competitively inhibit a viral cofactor binding 
site due to its striking molecular similarity with GM1, a 
host- cell ganglioside that binds the ganglioside binding 
domain of the spike protein.46 Further experimental 
work is needed to confirm these possible modes of action. 
After receptor binding, the virus enters host cells either 
through membrane fusion, or through receptor medi-
ated endocytosis. In the second route, endosome acidi-
fication facilitates viral escape and subsequent release of 
the nucleocapsid. Azithromycin interferes at this level, 
as it is a weak base that accumulates intracellularly and 
inside endosomes.41

During the remainder of the viral cycle, viruses are 
known to hijack intracellular antiapoptotic signalling 
pathways to promote their survival and replication.47 As 
an example, blocking the PI3K/AKT/mTOR- pathway 
decreases MERS- CoV replication in vitro.48 Rapamycin 
(sirolimus) is a known mammalian target of rapamycin 
(mTOR) -inhibiting macrolide, but azithromycin has 
also shown to interfere with mTOR- signalling, although 

to a lesser extent.48 49 It remains unclear if and how this 
affects SARS- CoV-2 replication.

Furthermore, azithromycin also has indirect antiviral 
effects. It induces intracellular mRNA expression of anti-
viral genes, IFN- stimulated genes and IFN production in 
infected host cells. This may enhance the cellular anti-
viral response mediated by the IFN pathway and help to 
retain balance in the early innate immune response.43 50 51

Anti-inflammatory effect and modulation of macrophage 
action
Azithromycin has well- documented immunomodulatory 
properties, that may affect the disease course of COVID-
19.

First, in in vitro models with respiratory epithelial 
cells azithromycin decreases mucus production and 
increases epithelial barrier thickness.52 It also reduces 
matrix metalloprotease (MMP) activity after challenge 
with bacterial lipopolysaccharides. This reduces inflam-
matory signalling, and helps to remain cell integrity and 
epithelial barrier function.52 These experiments have not 
been replicated with viral antigens. However, the related 
macrolide clarithromycin has shown to decrease lung 
and serum MMP-9 levels and vascular hyperpermeability 
due to influenza A infection in mouse models.53

Second, azithromycin is a potent modulator of mono-
cyte and macrophage cytokine responses. It may balance 
the immune answer in COVID-19 by suppressing NF-κB 
signalling54 and reducing release of classical M1 activated 
macrophage differentiation markers IL-8, IL-6, TNFα 
and granulocyte- macrophage colony- stimulating factor.34 
Azithromycin promotes polarisation of macrophages 
from a M1 to an M2 phenotype, thereby augmenting 
their phagocytotic capacity.55

Third, azithromycin also modulates Th2- cell and B- cell 
responses. For example, it reduces the serum titre of 
specific IgG1- antibodies after vaccination with pneumo-
coccal conjugate vaccine in mice.56 It is yet unclear how 
the antibody response contributes to the pathophysi-
ology of COVID-19. Late neutralising antibodies seem to 
be protective. However, early IgG- response has been asso-
ciated with more severe disease, possibly due to antibody- 
dependent enhancement.57

Fourthly, azithromycin attenuates neutrophil func-
tion. It downregulates chemoattractants and adhesion 
molecules in activated vascular endothelial cells, reduces 
neutrophil activation and constrains the release of 
neutrophil extracellular traps (NET).34 58 Neutrophilia 
and NETosis contribute to hyperinflammation and hyper-
coagulability in severe COVID-19,59 but may be secondary 
to other processes like bacterial coinfection.

Finally, azithromycin attenuates TGF-β-induced myofi-
broblast differentiation, fibroblast collagen secretion and 
extracellular matrix remodelling. This occurs through a 
decrease of both MMP production60 and vascular endo-
thelial growth factor release.61 Eventually, this limits the 
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damaging effects of inflammation, fibrosis formation and 
vascular remodelling.

Prophylaxis against bacterial superinfection
The reported rate of antibiotic prescription in COVID-19 
patients, especially in- hospital, is very high.62 Driving 
forces are the sometimes- difficult differential diagnosis 
with atypical pneumonias and fear of bacterial superinfec-
tion. Early bacterial coinfection has indeed been a well- 
known source of morbidity and mortality in historic influ-
enza pandemics.63 In COVID-19, however, pooled data 
suggest a much lower risk of bacterial co- infection, and 
do not support routine administration of antibiotics.64 
Even though azithromycin may improve outcomes in the 
limited cases of superinfection, antibacterial prophylaxis 
is no grounded argument for its systematic use, and must 
be weighed against the risk of bacterial resistance.

In vivo data
Non-COVID-19
Azithromycin is an established treatment modality 
in several chronic inflammatory respiratory diseases. 
Different clinical trials have proven its efficacy in chronic 
obstructive pulmonary disease, bronchiectasis, asthma 
and lung transplantation.58 While undeniable proof of 
azithromycin’s immunomodulatory potential, it is unsure 
if this can also be exploited in the acute setting.

Before COVID-19, the anti- inflammatory and antiviral 
effects of azithromycin have been clinically demonstrated 
in other viral pneumonias and in acute respiratory distress 
syndrome (ARDS). In a retrospective cohort evaluation 
of hospitalised patients with moderate or severe ARDS 
treated with azithromycin or not, azithromycin was asso-
ciated with a significant improvement in 90- day survival 
rate and a shorter time to successful discontinuation of 
mechanical ventilation.42 Also, azithromycin- use was asso-
ciated with decreased 60- day mortality and shorter time of 
ventilator dependency in patients with sepsis- associated 
ARDS.65 For the treatment of influenza, combination 
therapy of oseltamivir- azithromycin compared with osel-
tamivir alone showed improved clinical outcomes in a 
retrospective cohort10 and a faster decline of inflamma-
tory parameters in a randomised controlled trial.66 On 
the other hand, a tendency towards lower ICU mortality, 
lower 90- day mortality and shorter hospital stay did not 
achieve statistical significance in a cohort study on the 
use of macrolides (of which 71.3% was azithromycin) in 
critically ill patients with MERS.67 Possibly, the higher 
risk of coinfection in influenza, especially with influenza 
A,63 64 may contribute to the larger effect size.

COVID-19
The positive reports on azithromycin in other respira-
tory viral diseases have prompted the rapid initiation of 
interventional trials to evaluate its efficacy in COVID-19. 
At the time of writing, 121 trials with azithromycin are 
listed in clinical  trials. gov. At the start of the pandemic, 

however, following the example of early non- randomised 
series of a French group in Marseille,68 69 azithromycin 
has most often been prescribed as an adjuvant to hydrox-
ychloroquine. The use of hydroxychloroquine is now 
largely abandoned and few published studies have 
assessed azithromycin alone. The reported effects of 
azithromycin are thus often derived from patients treated 
with hydroxychloroquine- azithromycin combination 
versus hydroxychloroquine alone. Table 1 gives an over-
view of currently published peer- reviewed studies in the 
MEDLINE database, in which the effect of azithromycin is 
assessed. Studies only comparing combination regimens 
versus standard of care were not considered (eg, hydrox-
ychloroquine and azithromycin vs neither therapy), as no 
inference about the individual treatment effect of azith-
romycin could be deduced (see online supplemental 
material for detailed description of the individual studies 
and study selection).

Studies that assess azithromycin monotherapy versus 
standard of care in hospitalised patients report a wide 
effect range, from a decreased adjusted OR for mortality 
of 0.60 (95% CI 0.42 to 0.85) in the retrospective cohort of 
Albani et al70 to a non- significantly increased adjusted OR 
of 1.30 (95% CI 0.65 to 2.64) in Kuderer et al.71 Even more 
heterogeneity is seen in studies that assess the addition 
of azithromycin to hydroxychloroquine, with a survival 
benefit (adjusted HR of 0.294; 95% CI 0.218 to 0.396) 
seen by Arshad et al,72 opposed to a significantly increased 
30- day mortality (adjusted OR 2.93; 95% CI 1.79 to 4.79) 
reported again by Kuderer et al.71 In an outpatient setting, 
Guérin et al73 reported a significant reduction in the mean 
time to clinical recovery with azithromycin (12.9 days with 
azithromycin vs 25.8 days without; p<0.0001). A signifi-
cant difference in hospitalisation risk was, however, not 
withheld by Szente et al.74 (adjusted OR for azithromycin- 
containing vs no- azithromycin- containing regimens 0.93; 
95% CI 0.72 to 1.90). The increased mortality reported 
for hydroxychloroquine- azithromycin combination by 
Kuderer et al71 together with increased incidence of 
adverse events of this regimen in Rosenberg et al75 and 
the randomised controlled trial of Cavalcanti et al76 
strengthen the concerns about QT- prolonging drug–drug 
interactions. Importantly, no studies reported a signifi-
cantly increased risk of adverse outcomes with azith-
romycin monotherapy. Cavalcanti et al76 did not assess 
efficacy of azithromycin monotherapy, but found no 
increased adverse events in this treatment group, whereas 
QTc prolongation and increased transaminases were seen 
in the hydroxychloroquine containing regimens. Simi-
larly, Rosenberg et al75 reported an increased incidence of 
cardiac arrest with hydroxychloroquine and azithromycin 
coadministration (adjusted OR, 2.13; 95% CI 1.12 to 4.05) 
and when comparing hydroxychloroquine monotherapy 
with azithromycin monotherapy (adjusted OR, 2.97; 
95% CI 1.56 to 5.64) but not for azithromycin vs neither 
drug (adjusted OR, 0.64; 95% CI 0.27 to 1.56).

The interpretation of these heterogeneous results 
is troublesome in many ways. First, estimations of 
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azithromycin’s individual treatment effect from combi-
nation regimens with hydroxychloroquine may be 
unsound. Drug–drug interactions may increase short- 
term mortality and follow- up is often short to assess 
any long- term azithromycin benefits (eg, progression 
to fibrosis). Second, most of the studies are retrospec-
tive. State- of- the art statistical corrections like propensity 
score weighting are used in nearly half of the retrospec-
tive studies, but the propensities are often calculated on 
baseline patient characteristics like age, sex, comorbidi-
ties, obesity, while factors that have now been clearly asso-
ciated with disease severity (eg, lymphopenia, D- dimers) 
are often not considered. This still allows significant indi-
cation bias in both directions, meaning more patients 
with milder disease are treated with azithromycin alone 
or neither drug and more severely ill patients are treated 
with combination treatment vs neither drug. Moreover, 
initiation of any form of treatment has been influenced 
by various factors other than baseline characteristics 
and disease severity, such as drug availability, do- not- 
resuscitate orders and changing local policies. Third, 
the difference in techniques to adjust for confounders, 
but also the difference in primary outcomes (clinical 
improvement, mortality, hypoxia, hospitalisation risk), 
outcome measures (comparing odds vs time- to- event 
and survival analyses), target populations (mild vs severe, 
outpatients vs hospitalised patients) and follow- up times 
(in hospital mortality, 30- day mortality) all contribute 

to the heterogeneity and hinder data pooling for 
meta- analyses. We summarised the published meta- 
analyses that pooled azithromycin containing regimens 
(see online supplemental table A). They confirm the 
increased mortality risk in hydroxychloroquine–azith-
romycin cotreated patients. However, as they are largely 
based on the sometimes heavily biased data of the 
studies discussed above, one might still doubt a causal 
inference. The data of azithromycin monotherapy have 
not been pooled, and of the three meta- analyses that 
directly compared hydroxychloroquine with azithro-
mycin versus hydroxychloroquine alone, only Das et al77 
found a significantly increased mortality with the addi-
tion of azithromycin. Interestingly, not cardiac adverse 
events but rather the development of severe disease was 
an outcome associated with the addition of azithromycin 
to hydroxychloroquine. As there is no mechanistic ratio-
nale to expect disease worsening with azithromycin, this 
may as well signal residual indication bias.

Overall, the limited and low- quality evidence does not 
endorse azithromycin’s widespread use in the treatment 
of COVID-19. On the other hand, monotherapy is safe 
and therefore justifiable in a clinical trial setting. The 
data at least urges close monitoring when combined with 
other QT- prolonging drugs like hydroxychloroquine, or 
when other risk factors for long QT exist. A risk mitiga-
tion strategy such as applying strict ECG criteria to initiate 
(eg, only if QTc <450) and halt (eg, if QTc exceeds 500 ms 

Table 1 Medline published studies that assess the effect of AZ in COVID-19

  

Inpatient Outpatient

AZ alone AZ+HQ AZ alone AZ+HQ

Studies favouring 
AZ

one retrospective study:
Albani et al70

Five retrospective 
studies:
Arshad et al72

Tanriverdi et al88

d’Arminio et al89

Sekhavati et al90

Lauriola et al91

one retrospective 
study:
Guérin et al73

one retrospective 
study:
Guérin et al73

Studies neutral to 
AZ

six retrospective studies:
Kuderer et al71

Geleris et al92

Rosenberg et al75

Ip et al93

Rodriguez- Molinero et al94

Lammers et al95

five retrospective 
studies:
Satlin et al96

Ip et al93

Magagnoli et al97

Ayerbe et al98

Young et al99

two retrospective 
studies:
Kuderer et al71

Szente et al74

1 RCT:
Cavalcanti et al76

1 RCT:
Furtado et al100

Studies not 
favouring AZ

2 Retrospective studies:
Kuderer et al71

Rosenberg et al75

one retrospective 
study:
Kuderer et al71

1 RCT:
Cavalcanti et al76

PubMed was searched with the search term (‘COVID-19’ or ‘SARS- CoV-2’) and ‘azithromycin’. A total of 537 titles and/or abstracts were 
screened. Studies that compared combination regimens and from which no individual treatment effect of azithromycin could be deduced 
were excluded.
AZ, azithromycin; HQ, hydroxychloroquine; RCT, randomised controlled trial.
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or increases>60 ms since start of treatment) azithromycin 
may be warranted.78–80

DISCUSSION
The use of azithromycin in COVID-19 is mechanistically 
well grounded and indirectly supported by prior experi-
ences with other viral pneumonias, chronic pulmonary 
diseases and inflammatory disorders. Yet, the empirical 
practice of azithromycin treatment for COVID-19 has 
not been substantiated by good quality clinical data. 
Despite—maybe even because of—the limitations, a crit-
ical appraisal of the currently available evidence is valu-
able. It should contextualise the results of ongoing trials 
and could improve the set- up of future trials.

First, most interventions have an optimal time window. 
From a mechanistic point of view, initiation of azithro-
mycin before or during the early inflammatory phase 
is more sensible. At that early stage, an antiviral effect 
could still be relevant. It remains unclear, however, if 
azithromycin significantly inhibits viral replication in 
vivo. Better supported by the data in this review are the 
immunomodulatory effects of azithromycin on early 
inflammatory pathways that are key in the progression 
to severe COVID-19. They are supposed to balance the 
adaptive immune response, stimulate cellular immunity 
and avoid a subsequent cytokine storm. Results of large 
randomised controlled trials for hospitalised patients (eg, 
RECOVERY)81 are soon expected. However, a significant 
share of hospitalised patients may already be beyond this 
window. The primary care setting may be more suited to 
evaluate early interventions. Compared with the hospital 
though, this is a much less controlled environment, which 
makes retrospective data collection very challenging. 
A few studies are published, and the positive signals of 
Guérin et al73 and Esper et al.82 (preprint article, not 
included in table 1) are contradicted by Szente Fonseca 
et al.74 At least, with only a short follow- up time needed to 
assess the risk of hospital admission, prospective data In 
this context (eg, ATOMIC2, ACTION)83 84 should soon 
be able to provide more clarity.

Second, despite the pleiotropic effects of azithromycin, 
it is certainly not the most potent molecule. Targeted 
antiviral drugs will likely have a more robust effect on the 
viral load. However, experience with influenza has taught 
us to start antivirals as soon as possible after host infec-
tion.85 Likewise, the anti- inflammatory effects of targeted 
anti- IL1, anti- IL6 or steroids are stronger, though prob-
ably only warranted when clear signs of hyperinflamma-
tion are present.86 If anything, one should not expect 
azithromycin to be put forward as ‘the standard treat-
ment’, but rather as a part of a multimodal approach 
of antiviral, antithrombotic, anti- inflammatory and—
in selected cases—antibiotic drugs, depending on the 
patient’s presentation, immune status and disease stage.

Lastly, it is important to consider treatment effects that 
surpass acute pulmonary inflammation. Azithromycin 
has antifibrotic properties and crosses the blood–brain 

barrier. Possible morbidity of sequellar fibrotic lung 
disease and of prolonged neurological complaints 
extends well beyond the acute phase, and attenuating 
this later phase will significantly impact quality adjusted 
life years of COVID-19 patients. A comprehensive clinical 
trial assessment with extended follow- up is, therefore, 
crucial to confirm or exclude the hypothetical benefits of 
azithromycin in COVID-19.

In conclusion, its favourable safety profile, affordability 
and pleiotropic mechanisms have raised a large interest 
in azithromycin to treat COVID-19. Its effect on the early 
inflammatory phase is best supported by the current 
evidence, which is typically when the first symptoms arise 
and a patient contacts his caretaker. Before starting azith-
romycin, a comprehensive assessment for drug–drug 
interactions and cardiovascular risk factors is prereq-
uisite, especially when use in the first line is advocated. 
Beyond that, the current data remain equivocal. Due 
to the scale of the current pandemic, however, even a 
small treatment effect could mean a significant absolute 
reduction in COVID-19- related morbidity and mortality. 
Moreover, we have currently no idea on how a second 
primary infection will be eradicated by the hosts’ primed 
immune system. Beneficial modes of action should not 
be discarded based on short- term results obtained during 
the first wave of hospital admissions. In the next months, 
results of adequately performed randomised trials will 
provide better insight into the true role of azithromycin 
and other repurposed drugs in this historic pandemic. 
Still, as the field of intervention studies in COVID-19 is 
currently highly scattered, large coordinated interna-
tional initiatives will be needed to pool aggregated and 
individual patient data to come to optimal conclusions.87
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