Sleep apnoea is a risk factor for severe COVID-19

Satu Strausz,1,2,3 Tuomo Kiiskinen,1,4 Martin Broberg,1 Sanni Ruotsalainen,1 Jukka Koskela,1,5 Adel Bachour,6 FinnGen, Aarno Palotie,1,5,7 Tuula Palotie,2,3 Samuli Ripatti,1,5,8 Hanna M. Ollila1,5,9

ABSTRACT

Background Obstructive sleep apnoea (OSA) is associated with higher body mass index (BMI), diabetes, older age and male gender, which are all risk factors for severe COVID-19. We aimed to study if OSA is an independent risk factor for COVID-19 infection or for severe COVID-19.

Methods OSA diagnosis and COVID-19 infection were extracted from the hospital discharge, causes of death and infectious diseases registries in individuals who participated in the FinnGen study (n=260 405). Severe COVID-19 was defined as COVID-19 requiring hospitalisation. Multivariate logistic regression model was used to examine association. Comorbidities for either COVID-19 or OSA were selected as covariates. We performed a meta-analysis with previous studies.

Results We identified 445 individuals with COVID-19, and 38 (8.5%) of them with OSA of whom 19 out of 91 (20.9%) were hospitalised. OSA was associated with COVID-19 hospitalisation independent from age, sex, BMI and comorbidities (p-unadjusted=5.13x10^-3, OR-adjusted=2.93 (95% CI 1.02 to 8.39), p-adjusted=0.045). OSA was not associated with the risk of contracting COVID-19 (p=0.25). A meta-analysis of OSA and severe COVID-19 showed association across 15 835 COVID-19 positive controls, and n=1294 patients with OSA with severe COVID-19 (OR=2.37 (95% CI 1.14 to 4.95), p=0.021).

Conclusion Risk for contracting COVID-19 was the same for patients with OSA and those without OSA. In contrast, among COVID-19 positive patients, OSA was associated with higher risk for hospitalisation. Our findings are in line with earlier works and suggest OSA as an independent risk factor for severe COVID-19.

Key messages

- Is obstructive sleep apnoea (OSA) an independent risk factor for severe COVID-19?
- Patients with OSA have a higher risk to be hospitalised when affected by COVID-19 than non-OSA individuals.
- In assessment of patients with suspected or confirmed COVID-19 infection, OSA should be recognised as one of the comorbidity risk factors for developing a severe form of the disease and patients with OSA with suspected or confirmed COVID-19 infection should be monitored closely.

INTRODUCTION

COVID-19 is a severe respiratory disease caused by SARS-CoV-2 virus infection. A subset of patients face hospitalisation, respiratory failure or even death. The severity of COVID-19 is highly age dependent but also evidenced by the number of individuals that receive hospital and intensive care treatment.1,2 Finland has had a relatively small number of COVID-19 cases in the spring of 2020. However, approximately 1%–6% of those tested positive for the virus in Finland received hospital or intensive care treatment.3 These percentages are similar to those reported globally.1,2 Severe COVID-19 outcome is mediated primarily through respiratory distress.4,5 Risk factors for severe COVID-19 have been identified as older age, male sex, obesity, diabetes, cardiovascular disease and poor lung function.6 In addition, other respiratory diseases have been listed as potential contributors for COVID-19 severity. Indeed, there are studies suggesting that obstructive sleep apnoea (OSA) may be a risk factor for severe COVID-19.7–12 Such risk would have substantial effect as OSA is a common disease affecting at least 8% of the population with higher prevalence in older age groups reaching to over 20% in individuals over 60 years of age.13 The disease aetiology of OSA is characterised by repetitive apnoea-hypopnea cycles during sleep causing shortness of breath which can be associated with sometimetime severe oxygen desaturation, sleep disruption and increase in systolic and diastolic blood pressure.14 The known risk factors for OSA include obesity, high age, male sex and craniofacial and upper airway structure variations and anomalies.15 Similarly, OSA is associated with increased risk for cardiovascular mortality, especially if not treated. Finally, it is essential to note that treatment exists for the majority of patients with OSA so that night-time breathing can be
supported by continuous positive airway pressure (CPAP) or mandibular advancement device (MAD). This treatment substantially decreases the risk for cardiovascular events and death.\(^{16,17}\) Recently, questions have been raised about whether OSA constitutes a high risk for COVID-19 infection or COVID-19 hospitalisation.

We specifically aimed at evaluating if OSA associates with the risk for severe COVID-19 infection independently of other potential risk factors including age, sex, body mass index (BMI), hypertension, diabetes (including type 1 and type 2 diabetes), coronary heart disease (CHD) asthma and chronic obstructive pulmonary disease (COPD), and also whether the risk for contracting COVID-19 is elevated among patients with OSA.

METHODS

Study sample set

FinnGen (https://www.finngen.fi/en) is a large biobank study that aims to genotype 500 000 Finns including two types of biobank collections: (1) population-based epidemiological cohorts and (2) mostly disease-based collections in all University Hospitals in Finland (online supplemental table 1). FinnGen combines these data with longitudinal registry data that record healthcare events over the entire lifespan including the National Hospital Discharge Registry (available from 1968), the Causes of Death Registry (available from 1969), the National Infectious Diseases Registry (available from 1995) and the Medication Reimbursement Registry (available from 1995), all these using unique national personal identification codes, for the whole population of Finland for lifetime information since the start of each registry. FinnGen has harmonised data from these registries of 260 405 Finnish individuals. Registry data were available from the beginning of the registry until 31 December 2018 and Infectious Registry data until 30 October 2020. In addition, demographic and anthropometric data of BMI and smoking status are included.

The information of COVID-19 positive individuals was collected from The National Infectious Diseases Registry and the infection was verified by laboratory test using PCR testing. Data for risk factors, comorbidities and OSA diagnosis were obtained from the National Hospital Discharge Registry, the Causes of Death Registry and the Medication Reimbursement Registry, where the clinical endpoints had been generated using International Classification of Diseases codes for OSA, hypertension, diabetes (including type 1 and type 2 diabetes), CHD, asthma and COPD (online supplemental table 2).

Treatment information concerning OSA was collected from the patient records of Heart and Lung Center or Department of Oral and Maxillofacial Diseases, Helsinki University Hospital (HUH), Finland.

The diagnosis in this special healthcare derived data for OSA is typically based on the following criteria: subjective symptoms, clinical examination and sleep registration applying Apnoea-Hypopnea Index (AHI) \(5\) per hour for polysomnography or respiratory event index \(5\) per hour for out-of-centre sleep study.

For the meta-analysis, estimates were collected from the previous studies\(^{2,9}\) concerning the role of OSA on COVID-19 hospitalisation.

Statistical methods

Differences in baseline demographics and clinical characteristics were tested using \(\chi^2\) tests. Fisher’s exact test was used if the expected cell size was \(\leq 5\). For continuous variables, Student’s \(t\)-test was used. We considered \(p<0.05\) as statistically significant, and all tests were two sided (tables 1 and 2). All \(p\) values based on forementioned tests are Bonferroni corrected. Logistic regression was used to calculate OR between hospitalised and non-hospitalised groups. Model 1 was adjusted for age and sex, and model 2 for sex, body mass index (BMI), hypertension, diabetes (including type 1 and type 2 diabetes), coronary heart disease (CHD) asthma and chronic obstructive pulmonary disease (COPD). Hypopnea Index (AHI) \(5\) per hour for centre sleep study.

Table 1 Comparison of the baseline characteristics among COVID-19 positive individuals

<table>
<thead>
<tr>
<th></th>
<th>All n=445</th>
<th>Non-hospitalised n=354</th>
<th>Hospitalised n=91</th>
<th>P_unadjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean in years, SD)</td>
<td>52.7 (17.4)</td>
<td>49.3 (16.3)</td>
<td>65.9 (14.8)</td>
<td>1.06×10^{-15}*</td>
</tr>
<tr>
<td>Sex (male) (N, %)</td>
<td>166 (37.3)</td>
<td>133 (37.6)</td>
<td>33 (36.3)</td>
<td>1</td>
</tr>
<tr>
<td>OSA (N, %)</td>
<td>38 (8.5)</td>
<td>19 (5.4)</td>
<td>19 (20.9)</td>
<td>5.13×10^{-5}*</td>
</tr>
<tr>
<td>BMI (mean kg/m(^2), SD)</td>
<td>27.13 (5.44)</td>
<td>26.54 (5.20)</td>
<td>29.25 (5.78)</td>
<td>0.014*</td>
</tr>
<tr>
<td>Hypertension (N, %)</td>
<td>79 (17.8)</td>
<td>40 (11.3)</td>
<td>39 (42.9)</td>
<td>5.03×10^{-11}*</td>
</tr>
<tr>
<td>Diabetes (N, %)</td>
<td>46 (10.3)</td>
<td>23 (6.5)</td>
<td>23 (25.3)</td>
<td>3.45×10^{-6}*</td>
</tr>
<tr>
<td>CHD (N, %)</td>
<td>21 (4.7)</td>
<td>9 (2.5)</td>
<td>12 (13.2)</td>
<td>5.20×10^{-4}*</td>
</tr>
<tr>
<td>Asthma/COPD</td>
<td>54 (12.1)</td>
<td>40 (11.3)</td>
<td>14 (15.4)</td>
<td>1</td>
</tr>
</tbody>
</table>

Differences and associations between non-hospitalised and hospitalised COVID-19 positive individuals. Baseline demographics and clinical characteristics \(\chi^2\) values were based on \(\chi^2\) test. For continuous variables, we used Student’s \(t\)-test. BMI was measured of 264 participants including 206 non-hospitalised and 58 hospitalised individuals.

*Statistically significant.

BMI, body mass index; CHD, coronary heart disease; COPD, chronic obstructive pulmonary disease; OSA, obstructive sleep apnoea.
sex. Model 2 was adjusted for BMI in addition to covariates of Model 1. Model 3 was adjusted for BMI, hypertension, diabetes, CHD, asthma and COPD in addition to covariates of Model 1. Model 3 is adjusted for body mass index (BMI) in addition to covariates of Model 1. Model 2 is adjusted for BMI in addition to covariates of Model 1. Model 1 is adjusted for age and sex.

Our results and previous findings from the corresponding studies were pooled together forming a meta-analysis using restricted maximum likelihood estimation of the random effect model in the MetaGen R. The merged data consisted of 15,835 COVID-19 positive individuals including 1294 patients with OSA.

The R statistical package (V.4.0.2) was used for all analyses (www.r-project.org).

Patient and public involvement

Patients and public were not involved in the designing process of this study. The patients will not be informed individually of the study results otherwise than through possible media coverage.

RESULTS

The data included 260,405 Finnish individuals from FinnGen Data Freeze 6 with 445 patients with COVID-19. Of them, 38 (8.5%) had OSA. Severe COVID-19 cases (n=91) included 19 (20.9%) patients with OSA. Severe COVID-19 was defined as an infection requiring hospitalisation.

Of all patients with COVID-19 diagnosis (n=445, 37.3% male, mean age 52.7 years) 38 patients also had OSA diagnosis (8.5%, 50.0% male, mean age 61.3 years), (tables 1 and 2). This reflects a similar prevalence of OSA diagnoses in COVID-19 infected as in the normal population in FinnGen, where prevalence is 8%. Ninety-one (20.4%) patients required hospitalisation (36.3% male, mean age 65.9 years) including 19 patients with OSA (table 1).

Prevalence of OSA (p=5.13×10^{-5}), hypertension (p=5.03×10^{-1}), diabetes (p=3.45×10^{-6}) and CHD (p=5.20×10^{-4}) were statistically significantly higher in the hospitalised group. Similarly, age and BMI were higher among hospitalised individuals (p=1.06×10^{-15}, p=0.014, respectively; table 1).

To evaluate the performance of the diagnostic events, we compared the main risk factors among patients with COVID-19 between individuals with OSA (n=38) and those who did not have OSA diagnosis (n=407). Patients with OSA were statistically significantly older and their BMI was higher (mean age 61.3 years, BMI 31.15 kg/m^2, p=5.60×10^{-4}, p=3.38×10^{-3}, respectively) than non-OSA individuals (mean age 51.9 years, BMI 26.71 kg/m^2). Also, comorbidities were more prevalent among OSA individuals (p=1.74×10^{-4}) and they faced hospitalisation more often (p=3.21×10^{-3}). We did not observe differences in risk factors when comparing non-hospitalised (n=19, male 63.2%, mean age 56.3 years) and hospitalised patients with OSA (n=19, male 36.8%, mean age 66.3 years; table 2). Furthermore, 7/19 patients with OSA were hospitalised due to COVID-19 did not have any other disease comorbidities. We did not observe significant differences concerning age or BMI between individuals who had only OSA as a comorbidity or also

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Description of patients with COVID-19 with or without obstructive sleep apnoea (OSA) and a comparison between non-hospitalised and hospitalised patients with OSA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-OSA</td>
</tr>
<tr>
<td>Age (mean in years, SD)</td>
<td>51.9 (17.5)</td>
</tr>
<tr>
<td>Sex (male) (N, %)</td>
<td>147 (36.1)</td>
</tr>
<tr>
<td>BMI (mean kg/m^2, SD)</td>
<td>26.71 (5.27)</td>
</tr>
<tr>
<td>Comorbidities or outcomes (N, %)</td>
<td>118 (29.0)</td>
</tr>
<tr>
<td>Hospitalised (N, %)</td>
<td>72 (17.7)</td>
</tr>
</tbody>
</table>

Differences between non-OSA versus OSA individuals and non-hospitalised patients with OSA versus hospitalised patients with OSA among COVID-19-positive individuals. 7/19 patients with hospitalisation had OSA diagnosis but did not have any other disease comorbidities. P values were based on χ² test. Fisher’s exact test was used if the sample size was ≤5. For continuous variables, we used Student’s t-test. BMI was measured of 264 participants including 239 non-OSA and 25 OSA individuals. Comorbidities and outcomes=hypertension, diabetes, coronary heart disease, asthma, chronic obstructive pulmonary disease.

*Statistically significant.

BMI, body mass index.

Table 3 ORs associating obstructive sleep apnoea with severe COVID-19

<table>
<thead>
<tr>
<th>OR</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>3.85</td>
<td>1.82 to 8.13</td>
</tr>
<tr>
<td>Model 2</td>
<td>3.45</td>
<td>1.27 to 9.35</td>
</tr>
<tr>
<td>Model 3</td>
<td>2.93</td>
<td>1.02 to 8.39</td>
</tr>
</tbody>
</table>

Model 1 is adjusted for age and sex. Model 2 is adjusted for body mass index (BMI) in addition to covariates of Model 1. Model 3 is adjusted for BMI, hypertension, diabetes, coronary heart disease, asthma and chronic obstructive pulmonary disease in addition to covariates of model 1.

*Statistically significant.
Figure 1 Forest plots of obstructive sleep apnoea (OSA) and the risk of hospitalisation due to COVID-19 The evidence is combined using random-effect meta-analysis. The data consists of 15 835 COVID-19 positive individuals including 1294 patients with OSA. (A) The model is adjusted for age and sex, and ethnic background if available. *Cariou et al* study’s primary outcome was defined as tracheal intubation and/or death within 7 days of admission. (B) The model is adjusted for age, sex and BMI. **Maas et al** study is adjusted for diabetes and hypertension in addition to aforementioned covariates.

other comorbidities in addition to OSA (62.8 years, 68.9 years, p=0.72, 30.26 kg/m², 32.67 kg/m², p=1.00, respectively). Time since the first diagnosis of OSA to COVID-19 infection was not significantly different between non-hospitalised and hospitalised groups (6.6 years, 8.6 years, p=0.37, respectively).

We tested if OSA is associated with the risk of severe COVID-19 infection, determined as being hospitalised (n=91), or COVID-19 infection in general (n=145). While OSA did not affect the risk of contracting COVID-19 (p=0.25), patients with OSA had a considerably elevated risk for being hospitalised due to severe COVID-19 (OR=2.93 (95% CI 1.02 to 8.39), p=0.045, adjusted for age, sex, BMI, hypertension, diabetes, CHD, asthma and COPD; table 3).

We performed a meta-analysis by pooling the comparable endpoints between the published studies7-9 and examined the association with severe COVID-19 with and without adjusting for BMI. The studies, including our study, consisted of 15 835 COVID-19 positive individuals including 1294 patients with OSA. Overall, we observed over twofold increase in the pooled estimate prior to adjusting for BMI (OR=2.37 (1.14 to 4.95), p=0.021).

Adjusted estimates were available in the study of Cade et al8 (BMI) and Maas et al8 (BMI, hypertension and diabetes) but not in the study of Cariou et al.7 The pooled estimate somewhat attenuated after adjustment for BMI (OR=1.55 (0.88 to 2.72), p=0.13; figure 1).

To investigate patients with OSA contracted with COVID-19 in more detail, we accessed the healthcare data of 305 COVID-19 positive individuals including 11 patients with OSA treated in Heart and Lung Center or Department of Oral and Maxillofacial Diseases, HUH, Finland by the end of October 2020. The mean age of the COVID-19 positive patients with OSA was 55.1 years, mean BMI was 35.08 kg/m² and 9 (81.8%) patients were male. Mean AHI was 43.3 events per hour (table 4) and all 11 patients had either moderate (AHI≥15 but≤30 events per hour) or severe (AHI≥30 events per hour) OSA; 9 out of 11 had severe OSA and 2 out of 11 had moderate OSA. 8/11 had treated OSA; 7 patients had CPAP therapy and 1 patient had MAD. CPAP-treated patients used their appliances 98% of the nights with 6.3 hours mean time used. Mean AHI during treatment was 1.86 events/hour prior to the COVID-19 infection. Despite of the OSA treatment, all 11 patients required hospital treatment caused by pneumonia or other COVID-19 caused symptoms, such as high fever. All patients needed non-invasive ventilation and two required intubation. Treatment time in hospital was 15 days (mean, table 4).

<table>
<thead>
<tr>
<th>Table 4 Healthcare data characteristics of individuals with obstructive sleep apnoea contracted with COVID-19</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=11</td>
</tr>
<tr>
<td>Age (mean in years) 55.1 (8.0)</td>
</tr>
<tr>
<td>Sex (male) (N, %) 9 (81.8)</td>
</tr>
<tr>
<td>BMI (mean kg/m², SD) 35.08 (5.96)</td>
</tr>
<tr>
<td>Diabetes (N, %) 3 (27.3)</td>
</tr>
<tr>
<td>Hypertension (N, %) 7 (63.6)</td>
</tr>
<tr>
<td>CHD (N, %) 3 (27.3)</td>
</tr>
<tr>
<td>CPAP (N, %) 7 (63.6)</td>
</tr>
<tr>
<td>MAD (N, %) 1 (9.1)</td>
</tr>
<tr>
<td>AHI (mean, events per hour) 43.3 (20.6)</td>
</tr>
<tr>
<td>ODI (mean, events per hour) 39.6 (15.7)</td>
</tr>
<tr>
<td>SpO₂, mean (mean%, SD) 91.0 (3.3)</td>
</tr>
<tr>
<td>SpO₂, min (mean%, SD) 79.4 (8.3)</td>
</tr>
<tr>
<td>AHI with CPAP (mean, events per hour) 1.86 (2.07)</td>
</tr>
<tr>
<td>ICU (N, %) 3 (27.3)</td>
</tr>
<tr>
<td>NIV (N, %) 11 (100)</td>
</tr>
<tr>
<td>Intubation (N, %) 2 (18.2)</td>
</tr>
<tr>
<td>Treatment time in hospital (mean in days, SD) 15 (8.6)</td>
</tr>
</tbody>
</table>

DISCUSSION

Here, we examined the role of OSA as a risk factor for COVID-19 leading to hospitalisation. Our analyses revealed 2.93-times higher risk for COVID-19 hospitalisation in patients with OSA, independently of BMI and other known risk factors for OSA, or those for severe
COVID-19 suggesting that OSA is an independent risk factor for COVID-19.

Indeed, our findings are well in line with earlier works on COVID-19 comorbidities and OSA. Three studies have examined the association between COVID-19 and OSA before. Despite different endpoint definitions (contracting COVID-19, severity of the disease, mechanical ventilation, and death), these studies share similar findings with ours. All studies showed a significant association with COVID-19 severity and OSA.1,4, 19 However, only one study showed a statistically significant association between OSA and severe COVID-19 after adjusting for BMI.9 These findings suggest that while OSA is likely a risk factor for COVID-19, evaluating the magnitude of this association would benefit from harmonised analyses across different cohorts where comorbidities are similarly assessed.

Building on these studies, we set to test the role of OSA on COVID-19 hospitalisation. In our study, patients with OSA had 2.95 times higher risk of being hospitalised and the estimate was comparable and independent of the risk in diabetes patients, where elevated risk has been reported earlier for severe COVID-19.19 There are at least two potential pathological mechanisms how OSA may relate to severe COVID-19. First, individuals with OSA often have one or more comorbidities that are known risk factors for severe COVID-19. For example, high BMI increases the risk for severe COVID-19. Furthermore, OSA exacerbates the effects of many underlying risk factors increasing blood pressure. Second, OSA may worsen the core symptoms of severe COVID-19, especially during the night, when decreased oxygen saturation levels occur in OSA.14 Our findings together with earlier reports suggest that OSA should be taken into account when assessing who will develop life-threatening complications of COVID-19 infection.

In addition, we collected treatment information concerning OSA of 11 patients who had contracted COVID-19. Despite of the OSA treatment, patients developed a severe form of COVID-19 and all patients required hospital care suggesting OSA as a risk factor even if treated.

Finally, based on our results and previous studies, we set a meta-analysis to strengthen the role of OSA on COVID-19 hospitalisation. We were able to establish OSA as a risk factor and show that the effect is related to COVID-19 severity indicating over 2-fold risk.

Our findings should be interpreted in the context that registry-based ascertainment through hospitalisation may miss non-hospitalised OSA cases (false negatives). In addition, the population prevalence of OSA is larger than the observed prevalence as OSA is still underdiagnosed in Finland. This may affect to our findings. The high percentage of individuals in hospitals likely reflect the age distribution of the first wave patients in Finland, where infections took place in individuals approximately 50 years of age, and selective testing in those that had clear or severe symptoms. Similarly, early on the testing was targeted towards older individuals and to those with comorbidities, as not enough testing capacity was available early in the spring 2020. Although sufficient capacity and different strategies are in place now, the number of patients with mild COVID-19 infection may have not been recorded in the registries from the early spring 2020. Finally, compared with other countries there have been relatively small numbers of COVID-19 infections in Finland till the end of October 2020 when these data were curated. Therefore, while the effect estimates are comparable to other studies on OSA and COVID-19, the confidence intervals are relatively large due to the smaller total number of COVID-19 positive individuals in Finland and in the study sample: less than 500 patients compared with several hundred in other studies. Also, FinnGen represents older population (mean 58.6 years) than the average age (mean 42.9 years) in Finland.20

In conclusion, patients with OSA have the same risk of contracting COVID-19 than non-OSA individuals. Meanwhile, in this study, patients with OSA had 2.93 times higher risk to be hospitalised when affected by COVID-19 than non-OSA individuals. Our findings may suggest that, in assessment of patients with suspected or confirmed COVID-19 infection, OSA should be recognised as one of the comorbidity risk factors for developing a severe form of the disease. We believe that our finding may help in identifying high-risk individuals for severe forms of COVID-19 infection and therefore screening for previous indications of OSA could be beneficial among individuals testing positive for the virus.

Author affiliations

1Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
2Orthodontics, Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
3Department of Oral and Maxillofacial Diseases, Helsinki University Hospital (HUH), Helsinki, Finland
4Finnish Institute for Health and Welfare, Helsinki, Finland
5Broad Institute of MIT and Harvard, Cambridge, MA, USA
6Sleep Unit, Heart and Lung Center, Helsinki University Hospital (HUH), Helsinki, Finland
7Analytic and Translational Genetics Unit (ATGU), Department of Medicine, Department of Neurology and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
8Department of Public Health, University of Helsinki, Helsinki, Finland
9Stanford University School of Medicine, Palo Alto, CA, USA

Acknowledgements The authors would like to thank all participants of the FinnGen study for their generous participation. Participants and control subjects in FinnGen provided informed consent for biobank research, based on the Finnish Biobank Act. Alternatively, older research cohorts, collected prior the start of FinnGen (in August 2017), were collected based on study-specific consents and later transferred to the Finnish biobanks after approval by Finnea, the National Supervisory Authority for Welfare and Health. Recruitment protocols followed the biobank protocols approved by Fimea. The Coordinating Ethics Committee of the Hospital District of Helsinki and Uusimaa (HUS) approved the FinnGen study protocol Nr HUS/990/2017.

Contributors HO is the guarantor of the manuscript. TK, HO, SR and SS conceived the study and designed the study protocol. TK, HO and SS conducted the literature review, statistical analysis and drafted the manuscript. MB and SR contributed statistical analysis and TK phenotyped study samples. AB, MB, JK, SR, SHu, AP, TP and SR reviewed the manuscript for intellectual content, made revisions as needed and approved the final version for publication. HO, TP and SR supervised the study.

Open access
Funding SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312074), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation and University of Helsinki HI-LIFE Fellow and Grand Challenge grants and Juho Vainio Foundation & Academy of Finland Covid-19 research funding. AP was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312074), and the Sigrid Juselius Foundation. HMO was supported by the Academy of Finland (Grant No 309643, 340539), Oskar Öflund foundation, Yrjö Jahnsson foundation, Signe and Ane Gyllenberg foundation and Instrumentarium science foundation and TP by the HUCH research grant. The FinnGen project is funded by two grants from Business Finland (HUS 4685/31/2016 and UH 4386/31/2016) and the following industry partners: AbbVie, AstraZeneca UK, Biogen MA, Celgene Corporation, Celgene International II Sàrl, Genentech, Merck Sharp & Dohme Corp, Pfizer, GlaxoSmithKline Intellectual Property Development, Sandia National Services, Maze Therapeutics, Janssen Biotech. Following biobanks are acknowledged for the project samples: Auria Biobank (https://www.auria.fi/biopankki/en), THL Biobank (https://thl.fi/en/web/thl-biobank), Helsinki Biobank (https://www.helsinginbiopankki.fi/en/home), Biobank Borealis of Northern Finland (https://www.ppsp.fi/Tutkimus-ja-opetus/Biobankki/Pages/Biobank-Borealis-briefly-in-English.aspx), Finnish Clinical Biobank Tampere (https://www.tays.fi/en-US/Research_and_development/Finnish_Clinical_Biobank_Tampere), Biobank of Eastern Finland (https://ita-suomenbiopankki.fi/en), Central Finland Biobank (https://www.kshsp.fi/lti-FP/Poltiilateeti/Biobankki), Finnish Red Cross Blood Service Biobank (https://www.bloodservice.fi/Research_Projects/biobanking) and Terveytsalo Biobank (https://www.terveytsalo.fi/fl/Tyttystietoa/Terveytsalo-Biobankki/Biobankki/). All Finnish Biobanks are members of BBMRI.fi infrastructure (http://www.bbmri.fi/).

Competing interests None declared.

Patient consent for publication Obtained.

Data availability statement Data are available upon reasonable request. The FinnGen individual level data may be accessed through applications to the Finnish Biobanks’ FinBB portal, Finngenius (www.finngenius.fi). Summary data can be accessed through the FinnGen site https://www.finnngen.fi/en/access_results.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.
Contributors of FinnGen

Steering Committee

- **Aarno Palotie**
 Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
- **Mark Daly**
 Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland

Pharmaceutical companies

- **Howard Jacob**
 Abbvie, Chicago, IL, United States
- **Athena Matakidou**
 Astra Zeneca, Cambridge, United Kingdom
- **Heiko Runz**
 Biogen, Cambridge, MA, United States
- **Sally John**
 Biogen, Cambridge, MA, United States
- **Robert Plenge**
 Celgene, Summit, NJ, United States
- **Mark McCarthy**
 Genentech, San Francisco, CA, United States
- **Julie Hunkapiller**
 Genentech, San Francisco, CA, United States
- **Meg Ehm**
 GlaxoSmithKline, Brentford, United Kingdom
- **Dawn Waterworth**
 GlaxoSmithKline, Brentford, United Kingdom
- **Caroline Fox**
 Merck, Kenilworth, NJ, United States
- **Anders Malarstig**
 Pfizer, New York, NY, United States
- **Kathy Klinger**
 Sanofi, Paris, France
- **Kathy Call**
 Sanofi, Paris, France

University of Helsinki & Biobanks

- **Tomi Mäkelä**
 HiLIFE, University of Helsinki, Finland
- **Jaakko Kaprio**
 Institute for Molecular Medicine Finland, HiLIFE, Helsinki, Finland
- **Petri Virolainen**
 Auria Biobank / Univ. of Turku / Hospital District of Southwest Finland, Turku, Finland
- **Kari Pulkki**
 Auria Biobank / Univ. of Turku / Hospital District of Southwest Finland, Turku, Finland
- **Terhi Kilpi**
 THL Biobank / Finnish Institute for Health and Welfare Helsinki, Finland
- **Markus Perola**
 THL Biobank / Finnish Institute for Health and Welfare Helsinki, Finland
- **Jukka Partanen**
 Finnish Red Cross Blood Service / Finnish Hematology Registry and Clinical Biobank, Helsinki, Finland
- **Anne Pitkaranta**
 Hospital District of Helsinki and Uusimaa, Helsinki, Finland
- **Riitta Kaarteenaho**
 Northern Finland Biobank Borealis / University of Oulu / Northern Ostrobothnia Hospital District, Oulu, Finland
- **Seppo Vainio**
 Northern Finland Biobank Borealis / University of Oulu / Northern Ostrobothnia Hospital District, Oulu, Finland
- **Kimmo Savinainen**
 Finnish Clinical Biobank Tampere / University of Tampere / Pirkanmaa Hospital District, Tampere, Finland
- **Veli-Matti Kosma**
 Biobank of Eastern Finland / University of Eastern Finland / Northern Savo Hospital District, Kuopio, Finland
- **Urho Kujala**
 Central Finland Biobank / University of Jyväskylä / Central Finland Health Care
District, Jyväskylä, Finland

Other Experts/ Non-Voting Members

Outi Tuovila
Business Finland, Helsinki, Finland

Minna Hendolin
Business Finland, Helsinki, Finland

Raimo Pakkamen
Business Finland, Helsinki, Finland

Scientific Committee

Pharmaceutical companies

Jeff Waring
Abbvie, Chicago, IL, United States

Bridget Riley-Gillis
Abbvie, Chicago, IL, United States

Athena Matakidou
Astra Zeneca, Cambridge, United Kingdom

Heiko Runz
Biogen, Cambridge, MA, United States

Jimmy Liu
Biogen, Cambridge, MA, United States

Shameek Biswas
Celgene, Summit, NJ, United States

Julie Hunkapiller
Genentech, San Francisco, CA, United States

Dawn Waterworth
GlaxoSmithKline, Brentford, United Kingdom

Meg Ehm
GlaxoSmithKline, Brentford, United Kingdom

Dorothee Diogo
Merck, Kenilworth, NJ, United States

Caroline Fox
Merck, Kenilworth, NJ, United States

Anders Malarstig
Pfizer, New York, NY, United States

Catherine Marshall
Pfizer, New York, NY, United States

Xinli Hu
Pfizer, New York, NY, United States

Kathy Call
Sanofi, Paris, France

Kathy Klinger
Sanofi, Paris, France

Matthias Gossel
Sanofi, Paris, France

University of Helsinki & Biobanks

Samuli Ripatti
Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland

Johanna Schleutker
Auria Biobank / Univ. of Turku / Hospital District of Southwest Finland, Turku, Finland

Markus Perola
THL Biobank / Finnish Institute for Health and Welfare Helsinki, Finland

Mikko Arvas
Finnish Red Cross Blood Service / Finnish Hematology Registry and Clinical Biobank, Helsinki, Finland

Olli Carpen
Hospital District of Helsinki and Uusimaa, Helsinki, Finland

Reetta Hinttala
Northern Finland Biobank Borealis / University of Oulu / Northern Ostrobothnia Hospital District, Oulu, Finland

Johannes Kettunen
Northern Finland Biobank Borealis / University of Oulu / Northern Ostrobothnia Hospital District, Oulu, Finland

Reijo Laaksonen
Finnish Clinical Biobank Tampere / University of Tampere / Pirkanmaa Hospital District, Tampere, Finland
Arto Mannermaa Biobank of Eastern Finland / University of Eastern Finland / Northern Savo Hospital District, Kuopio, Finland
Juha Paloneva Central Finland Biobank / University of Jyväskylä / Central Finland Health Care District, Jyväskylä, Finland
Urho Kujala Central Finland Biobank / University of Jyväskylä / Central Finland Health Care District, Jyväskylä, Finland

Other Experts/ Non-Voting Members
Outi Tuovila Business Finland, Helsinki, Finland
Minna Hendolin Business Finland, Helsinki, Finland
Raimo Pakkanen Business Finland, Helsinki, Finland

Clinical Groups
Neurology Group
Hilkka Soininen Northern Savo Hospital District, Kuopio, Finland
Valteri Julkunen Northern Savo Hospital District, Kuopio, Finland
Anne Remes Northern Ostrobothnia Hospital District, Oulu, Finland
Reetta Kälviäinen Northern Savo Hospital District, Kuopio, Finland
Mikko Hiitunen Northern Savo Hospital District, Kuopio, Finland
Jukka Peltola Pirkanmaa Hospital District, Tampere, Finland
Pentti Tienari Hospital District of Helsinki and Uusimaa, Helsinki, Finland
Juha Rinne Hospital District of Southwest Finland, Turku, Finland
Adam Ziemann Abbvie, Chicago, IL, United States
Jeffrey Waring Abbvie, Chicago, IL, United States
Sahar Esmaeili Abbvie, Chicago, IL, United States
Nizar Smaoui Abbvie, Chicago, IL, United States
Anne Lehtonen Abbvie, Chicago, IL, United States
Susan Eaton Biogen, Cambridge, MA, United States
Heiko Runz Biogen, Cambridge, MA, United States
Sanni Lahdenperä Biogen, Cambridge, MA, United States
Shameek Biswas Celgene, Summit, NJ, United States
John Michon Genentech, San Francisco, CA, United States
Geoff Kerchner Genentech, San Francisco, CA, United States
Julie Hunkapiller Genentech, San Francisco, CA, United States
Natalie Bowers Genentech, San Francisco, CA, United States
Edmond Teng Genentech, San Francisco, CA, United States
John Eicher Merck, Kenilworth, NJ, United States
Vinay Mehta Merck, Kenilworth, NJ, United States
Padhraig Gormley Merck, Kenilworth, NJ, United States
Kari Linden Pfizer, New York, NY, United States
Christopher Whelan Pfizer, New York, NY, United States
Fanli Xu GlaxoSmithKline, Brentford, United Kingdom
Gastroenterology Group

Martti Färkkilä Hospital District of Helsinki and Uusimaa, Helsinki, Finland
Sampsu Pikkarainen Hospital District of Helsinki and Uusimaa, Helsinki, Finland
Airi Jussila Pirkanmaa Hospital District, Tampere, Finland
Timo Blomster Northern Ostrobothnia Hospital District, Oulu, Finland
Mikko Kiviniemi Northern Savo Hospital District, Kuopio, Finland
Markku Voutilainen Hospital District of Southwest Finland, Turku, Finland
Bob Georgantas Abbvie, Chicago, IL, United States
Graham Heap Abbvie, Chicago, IL, United States
Jeffrey Waring Abbvie, Chicago, IL, United States
Nizar Smaoui Abbvie, Chicago, IL, United States
Fedik Rahimov Abbvie, Chicago, IL, United States
Anne Lehtonen Abbvie, Chicago, IL, United States
Keith Usiskin Celgene, Summit, NJ, United States
Joseph Maranville Celgene, Summit, NJ, United States
Tim Lu Genentech, San Francisco, CA, United States
Natalie Bowers Genentech, San Francisco, CA, United States
Danny Oh Genentech, San Francisco, CA, United States
John Michon Genentech, San Francisco, CA, United States
Vinay Mehta Merck, Kenilworth, NJ, United States
Kirsi Kalpala Pfizer, New York, NY, United States
Melissa Miller Pfizer, New York, NY, United States
Xinli Hu Pfizer, New York, NY, United States
Linda McCarthy GlaxoSmithKline, Brentford, United Kingdom

Rheumatology Group

Kari Eklund Hospital District of Helsinki and Uusimaa, Helsinki, Finland
Antti Palomäki Hospital District of Southwest Finland, Turku, Finland
Pia Isomäki Pirkanmaa Hospital District, Tampere, Finland
Laura Pirilä Hospital District of Southwest Finland, Turku, Finland
Oili Kaipiainen-Seppänen Northern Savo Hospital District, Kuopio, Finland
Johanna Huhtakangas Northern Ostrobothnia Hospital District, Oulu, Finland
Bob Georgantas Abbvie, Chicago, IL, United States
Jeffrey Waring Abbvie, Chicago, IL, United States
Fedik Rahimov Abbvie, Chicago, IL, United States
Apinya Lertratanakul Abbvie, Chicago, IL, United States
Nizar Smaoui Abbvie, Chicago, IL, United States
Anne Lehtonen Abbvie, Chicago, IL, United States
David Close Astra Zeneca, Cambridge, United Kingdom
Marla Hochfeld Celgene, Summit, NJ, United States
Natalie Bowers Genentech, San Francisco, CA, United States
John Michon Genentech, San Francisco, CA, United States
Dorothee Diogo Merck, Kenilworth, NJ, United States
Vinay Mehta Merck, Kenilworth, NJ, United States
Kirsli Kalpala Pfizer, New York, NY, United States
Nan Bing Pfizer, New York, NY, United States
Xinli Hu Pfizer, New York, NY, United States
Jorge Esparza Gordillo GlaxoSmithKline, Brentford, United Kingdom
Nina Mars Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland

Pulmonology Group
Tarja Laitinen Pirkanmaa Hospital District, Tampere, Finland
Margit Pelkonen Northern Savo Hospital District, Kuopio, Finland
Paula Kauppi Hospital District of Helsinki and Uusimaa, Helsinki, Finland
Hannu Kankaanranta Pirkanmaa Hospital District, Tampere, Finland
Terttu Harju Northern Ostrobothnia Hospital District, Oulu, Finland
Nizar Smaoui Abbvie, Chicago, IL, United States
David Close Astra Zeneca, Cambridge, United Kingdom

Cardiometabolic Diseases Group
Veikko Salomaa Finnish Institute for Health and Welfare Helsinki, Finland
Teemu Niiranen Finnish Institute for Health and Welfare Helsinki, Finland
Markus Juonala Hospital District of Southwest Finland, Turku, Finland
Kaj Metsärinne Hospital District of Southwest Finland, Turku, Finland
Mika Kähönen Pirkanmaa Hospital District, Tampere, Finland
Juhan Junttila Northern Ostrobothnia Hospital District, Oulu, Finland
Markku Laakso Northern Savo Hospital District, Kuopio, Finland
Jussi Pihlajamäki Northern Savo Hospital District, Kuopio, Finland
Juha Sinisalo Hospital District of Helsinki and Uusimaa, Helsinki, Finland
Marja-Riitta Taskinen Hospital District of Helsinki and Uusimaa, Helsinki, Finland
Tiiuamaaja Tuomi Hospital District of Helsinki and Uusimaa, Helsinki, Finland
Jari Laukkanen Central Finland Health Care District, Jyväskylä, Finland
Ben Challis Astra Zeneca, Cambridge, United Kingdom
Andrew Peterson Genentech, San Francisco, CA, United States
Julie Hunkapiller Genentech, San Francisco, CA, United States
Natalie Bowers Genentech, San Francisco, CA, United States
John Michon Genentech, San Francisco, CA, United States
Dorothée Diogo Merck, Kenilworth, NJ, United States
Audrey Chu Merck, Kenilworth, NJ, United States
Vinay Mehta Merck, Kenilworth, NJ, United States
Jaakko Parkkinen Pfizer, New York, NY, United States
Melissa Miller Pfizer, New York, NY, United States
Anthony Muslin Sanofi, Paris, France
Dawn Waterworth GlaxoSmithKline, Brentford, United Kingdom

Oncology Group
Heikki Joensuu Hospital District of Helsinki and Uusimaa, Helsinki, Finland
Tuomo Meretoja Hospital District of Helsinki and Uusimaa, Helsinki, Finland
Olli Carpen Hospital District of Helsinki and Uusimaa, Helsinki, Finland
Lauri Aaltonen Hospital District of Helsinki and Uusimaa, Helsinki, Finland
Annika Auronen Pirkanmaa Hospital District, Tampere, Finland
Peeter Karihtala Northern Ostrobothnia Hospital District, Oulu, Finland
Saila Kauppila Northern Ostrobothnia Hospital District, Oulu, Finland
Paivi Auvinen Northern Savo Hospital District, Kuopio, Finland
Klaus Elenius Hospital District of Southwest Finland, Turku, Finland
Relja Popovic Abbvie, Chicago, IL, United States
Jeffrey Waring Abbvie, Chicago, IL, United States
Bridget Riley-Gillis Abbvie, Chicago, IL, United States
Anne Lehtonen Abbvie, Chicago, IL, United States
Athena Matakidou Astra Zeneca, Cambridge, United Kingdom
Jennifer Schutzman Genentech, San Francisco, CA, United States
Julie Hunkapiller Genentech, San Francisco, CA, United States
Natalie Bowers Genentech, San Francisco, CA, United States
John Michon Genentech, San Francisco, CA, United States
Vinay Mehta Merck, Kenilworth, NJ, United States
Andrey Loboda Merck, Kenilworth, NJ, United States
Aparna Chhibber Merck, Kenilworth, NJ, United States
Heli Lehtonen Pfizer, New York, NY, United States
Stefan McDonough Pfizer, New York, NY, United States
Marika Crohns Sanofi, Paris, France
Diptee Kulkarni GlaxoSmithKline, Brentford, United Kingdom

Ophthalmology Group
Kai Kaarniranta Northern Savo Hospital District, Kuopio, Finland
Joni Turunen Hospital District of Helsinki and Uusimaa, Helsinki, Finland
Terhi Ollila Hospital District of Helsinki and Uusimaa, Helsinki, Finland
Sanna Seitsonen Hospital District of Helsinki and Uusimaa, Helsinki, Finland
Hannu Uusitalo Pirkanmaa Hospital District, Tampere, Finland
Vesa Aaltonen Hospital District of Southwest Finland, Turku, Finland
Hannele Uusitalo-Järvinen Pirkanmaa Hospital District, Tampere, Finland
Marja Luodonpää Northern Ostrobothnia Hospital District, Oulu, Finland
Nina Hautala Northern Ostrobothnia Hospital District, Oulu, Finland
Heiko Runz Biogen, Cambridge, MA, United States
Erich Strauss Genentech, San Francisco, CA, United States
Natalie Bowers Genentech, San Francisco, CA, United States
Hao Chen Genentech, San Francisco, CA, United States
John Michon Genentech, San Francisco, CA, United States
Anna Podgornaia Merck, Kenilworth, NJ, United States
Vinay Mehta Merck, Kenilworth, NJ, United States
Dorothee Diogo Merck, Kenilworth, NJ, United States
Joshua Hoffman GlaxoSmithKline, Brentford, United Kingdom

Dermatology Group
Kaisa Tasanen Northern Ostrobothnia Hospital District, Oulu, Finland
Laura Huilaja Northern Ostrobothnia Hospital District, Oulu, Finland
Katriina Hannula-Jouppi Hospital District of Helsinki and Uusimaa, Helsinki, Finland
Tea Salmi Pirkanmaa Hospital District, Tampere, Finland
Sirkku Peltonen Hospital District of Southwest Finland, Turku, Finland
Leena Koulu Hospital District of Southwest Finland, Turku, Finland
Ilkka Harvima Northern Savo Hospital District, Kuopio, Finland
Kirs Kalpala Pfizer, New York, NY, United States
Ying Wu Pfizer, New York, NY, United States
David Choy Genentech, San Francisco, CA, United States
John Michon Genentech, San Francisco, CA, United States
Nizar Smaoui Abbvie, Chicago, IL, United States
Fedik Rahimov Abbvie, Chicago, IL, United States
Anne Lehtonen Abbvie, Chicago, IL, United States
Dawn Waterworth GlaxoSmithKline, Brentford, United Kingdom

FinnGen Teams
Administration Team
Anu Jalanko Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
Risto Kajanne Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
Ulrike Lyhs Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
Communication

Mari Kaunisto Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland

Analysis Team

Justin Wade Davis Abbvie, Chicago, IL, United States
Bridget Riley-Gillis Abbvie, Chicago, IL, United States
Danjuma Quarless Abbvie, Chicago, IL, United States
Slavé Petrovski Astra Zeneca, Cambridge, United Kingdom
Jimmy Liu Biogen, Cambridge, MA, United States
Chia-Yen Chen Biogen, Cambridge, MA, United States
Paola Bronson Biogen, Cambridge, MA, United States
Robert Yang Celgene, Summit, NJ, United States
Joseph Maranville Celgene, Summit, NJ, United States
Shameek Biswas Celgene, Summit, NJ, United States
Diana Chang Genentech, San Francisco, CA, United States
Julie Hunkapiller Genentech, San Francisco, CA, United States
Tushar Bhangale Genentech, San Francisco, CA, United States
Natalie Bowers Genentech, San Francisco, CA, United States
Dorothee Diogo Merck, Kenilworth, NJ, United States
Emily Holzinger Merck, Kenilworth, NJ, United States
Padhraig Gormley Merck, Kenilworth, NJ, United States
Xulong Wang Merck, Kenilworth, NJ, United States
Xing Chen Pfizer, New York, NY, United States
Ása Hedman Pfizer, New York, NY, United States
Kirsi Auro GlaxoSmithKline, Brentford, United Kingdom
Clarence Wang Sanofi, Paris, France
Ethan Xu Sanofi, Paris, France
Franck Auge Sanofi, Paris, France
Clement Chatelain Sanofi, Paris, France
Mitja Kurki Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland / Broad Institute, Cambridge, MA, United States
Samuli Ripatti Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
Mark Daly Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
Juha Karjalainen Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland / Broad Institute, Cambridge, MA, United States
Aki Havulinna Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
Anu Jalanko Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
Kimmo Palin University of Helsinki, Helsinki, Finland
Priit Palta Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
Pietro Della Briotta Parolo Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wei Zhou</td>
<td>Broad Institute, Cambridge, MA, United States</td>
</tr>
<tr>
<td>Susanna Lemmelä</td>
<td>Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland</td>
</tr>
<tr>
<td>Manuel Rivas</td>
<td>University of Stanford, Stanford, CA, United States</td>
</tr>
<tr>
<td>Jarmo Harju</td>
<td>Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland</td>
</tr>
<tr>
<td>Aarno Palotie</td>
<td>Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland</td>
</tr>
<tr>
<td>Arto Lehisto</td>
<td>Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland</td>
</tr>
<tr>
<td>Andrea Ganna</td>
<td>Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland</td>
</tr>
<tr>
<td>Vincent Llorens</td>
<td>Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland</td>
</tr>
<tr>
<td>Antti Karlsson</td>
<td>Auria Biobank / Univ. of Turku / Hospital District of Southwest Finland, Turku, Finland</td>
</tr>
<tr>
<td>Kati Kristiansson</td>
<td>THL Biobank / Finnish Institute for Health and Welfare Helsinki, Finland</td>
</tr>
<tr>
<td>Mikko Arvas</td>
<td>Finnish Red Cross Blood Service / Finnish Hematology Registry and Clinical Biobank, Helsinki, Finland</td>
</tr>
<tr>
<td>Kati Hyväinen</td>
<td>Finnish Red Cross Blood Service / Finnish Hematology Registry and Clinical Biobank, Helsinki, Finland</td>
</tr>
<tr>
<td>Jarmo Ritari</td>
<td>Finnish Red Cross Blood Service / Finnish Hematology Registry and Clinical Biobank, Helsinki, Finland</td>
</tr>
<tr>
<td>Tiina Wahlfors</td>
<td>Finnish Red Cross Blood Service / Finnish Hematology Registry and Clinical Biobank, Helsinki, Finland</td>
</tr>
<tr>
<td>Miika Koskinen</td>
<td>Hospital District of Helsinki and Uusimaa, Helsinki, Finland BB/HUS/Univ Hosp Districts</td>
</tr>
<tr>
<td>Olli Carpen</td>
<td>Hospital District of Helsinki and Uusimaa, Helsinki, Finland BB/HUS/Univ Hosp Districts</td>
</tr>
<tr>
<td>Johannes Kettunen</td>
<td>Northern Finland Biobank Borealis / University of Oulu / Northern Ostrobothnia Hospital District, Oulu, Finland</td>
</tr>
<tr>
<td>Katri Pylkäs</td>
<td>Northern Finland Biobank Borealis / University of Oulu / Northern Ostrobothnia Hospital District, Oulu, Finland</td>
</tr>
<tr>
<td>Marita Kalaoja</td>
<td>Northern Finland Biobank Borealis / University of Oulu / Northern Ostrobothnia Hospital District, Oulu, Finland</td>
</tr>
<tr>
<td>Minna Karjalainen</td>
<td>Northern Finland Biobank Borealis / University of Oulu / Northern Ostrobothnia Hospital District, Oulu, Finland</td>
</tr>
<tr>
<td>Tuomo Mantere</td>
<td>Northern Finland Biobank Borealis / University of Oulu / Northern Ostrobothnia Hospital District, Oulu, Finland</td>
</tr>
<tr>
<td>Eeva Kangasniemi</td>
<td>Finnish Clinical Biobank Tampere / University of Tampere / Pirkanmaa Hospital District, Tampere, Finland</td>
</tr>
<tr>
<td>Sami Heikkinen</td>
<td>Biobank of Eastern Finland / University of Eastern Finland / Northern Savo Hospital District, Kuopio, Finland</td>
</tr>
<tr>
<td>Arto Mannermaa</td>
<td>Biobank of Eastern Finland / University of Eastern Finland / Northern Savo Hospital District, Kuopio, Finland</td>
</tr>
<tr>
<td>Eija Laakkonen</td>
<td>Central Finland Biobank / University of Jyväskylä / Central Finland Health Care District, Jyväskylä, Finland</td>
</tr>
<tr>
<td>Juha Kononen</td>
<td>Central Finland Biobank / University of Jyväskylä / Central Finland Health Care District, Jyväskylä, Finland</td>
</tr>
</tbody>
</table>
District, Jyväskylä, Finland

Sample Collection Coordination
Anu Loukola Hospital District of Helsinki and Uusimaa, Helsinki, Finland

Sample Logistics
Päivi Laiho THL Biobank / Finnish Institute for Health and Welfare Helsinki, Finland
Tuuli Sistonen THL Biobank / Finnish Institute for Health and Welfare Helsinki, Finland
Essi Kaiharju THL Biobank / Finnish Institute for Health and Welfare Helsinki, Finland
Markku Laukkanen THL Biobank / Finnish Institute for Health and Welfare Helsinki, Finland
Elina Järvensivu THL Biobank / Finnish Institute for Health and Welfare Helsinki, Finland
Sini Lähteenmäki THL Biobank / Finnish Institute for Health and Welfare Helsinki, Finland
Lotta Männikkö THL Biobank / Finnish Institute for Health and Welfare Helsinki, Finland
Regis Wong THL Biobank / Finnish Institute for Health and Welfare Helsinki, Finland

Registry Data Operations
Kati Kristiansson THL Biobank / Finnish Institute for Health and Welfare Helsinki, Finland
Hannele Mattsson THL Biobank / Finnish Institute for Health and Welfare Helsinki, Finland
Susanna Lemmelä Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
Tero Hiekkalinna THL Biobank / Finnish Institute for Health and Welfare Helsinki, Finland
Manuel González Jiménez THL Biobank / Finnish Institute for Health and Welfare Helsinki, Finland

Genotyping
Kati Donner Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland

Sequencing Informatics
Priit Palta Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
Kalle Pärn Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
Javier Nunez-Fontarnau Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland

Data Management and IT Infrastructure
Jarmo Harju Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
Elina Kilpeläinen Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
Timo P. Sipilä Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
Georg Brein Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
Alexander Dada Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
Ghazal Awaisa Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
Anastasia Sheherban Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
Tuomas Sipilä Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
Clinical Endpoint Development
Hannele Laivuori Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
Aki Havulinna Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
Susanna Lemmelä Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland
Tuomo Kiiskinen Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland

Trajectory Team
Tarja Laitinen Pirkanmaa Hospital District, Tampere, Finland
Harri Siirtola University of Tampere, Tampere, Finland
Javier Gracia Tabuenca University of Tampere, Tampere, Finland

Biobank Directors
Lila Kallio Auria Biobank, Turku, Finland
Sirpa Soini THL Biobank, Helsinki, Finland
Jukka Partanen Blood Service Biobank, Helsinki, Finland
Kimmo Pitkänen Helsinki Biobank, Helsinki, Finland
Seppo Vainio Northern Finland Biobank Borealis, Oulu, Finland
Kimmo Savinainen Tampere Biobank, Tampere, Finland
Veli-Matti Kosma Biobank of Eastern Finland, Kuopio, Finland
Teijo Kuopio Central Finland Biobank, Jyväskylä, Finland
Supplementary Table 1. The prospective epidemiological and disease-based cohorts, and hospital biobank samples in FinnGen Data Freeze 6

<table>
<thead>
<tr>
<th>Cohort</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auria Biobank</td>
<td>29201</td>
</tr>
<tr>
<td>Biobank of Central Finland</td>
<td>7743</td>
</tr>
<tr>
<td>Biobank of Eastern Finland</td>
<td>7765</td>
</tr>
<tr>
<td>Blood Service Biobank</td>
<td>28901</td>
</tr>
<tr>
<td>Borealis Biobank</td>
<td>7390</td>
</tr>
<tr>
<td>Biobank Botnia</td>
<td>8681</td>
</tr>
<tr>
<td>Biobank Corogene</td>
<td>4689</td>
</tr>
<tr>
<td>Biobank FinHealth</td>
<td>5928</td>
</tr>
<tr>
<td>Helsinki Biobank</td>
<td>58693</td>
</tr>
<tr>
<td>Tampere Biobank</td>
<td>12394</td>
</tr>
<tr>
<td>Terveystalo Biobank</td>
<td>1709</td>
</tr>
<tr>
<td>THL Biobank ATBC</td>
<td>3836</td>
</tr>
<tr>
<td>THL Biobank FinIPF</td>
<td>201</td>
</tr>
<tr>
<td>THL Biobank FINRISK 1992</td>
<td>4931</td>
</tr>
<tr>
<td>THL Biobank FINRISK 1997</td>
<td>6997</td>
</tr>
<tr>
<td>THL Biobank FINRISK 2002</td>
<td>6869</td>
</tr>
<tr>
<td>THL Biobank FINRISK 2007</td>
<td>5143</td>
</tr>
<tr>
<td>THL Biobank FINRISK 2012</td>
<td>5233</td>
</tr>
<tr>
<td>THL Biobank GENERISK</td>
<td>6898</td>
</tr>
<tr>
<td>THL Biobank Health 2000</td>
<td>6529</td>
</tr>
<tr>
<td>THL Biobank Health 2011</td>
<td>708</td>
</tr>
<tr>
<td>THL Biobank HHS</td>
<td>2113</td>
</tr>
<tr>
<td>THL Biobank Kuusamo</td>
<td>123</td>
</tr>
<tr>
<td>THL Biobank Migraine</td>
<td>7717</td>
</tr>
<tr>
<td>THL Biobank SUPER</td>
<td>8466</td>
</tr>
<tr>
<td>THL Biobank Diabetes</td>
<td>10145</td>
</tr>
<tr>
<td>THL Biobank Twins</td>
<td>11402</td>
</tr>
<tr>
<td>Total:</td>
<td>260405</td>
</tr>
</tbody>
</table>

THL= Finnish Institute for Health and Welfare Helsinki, Finland
Supplementary Table 2. ICD-codes for OSA and comorbidities

<table>
<thead>
<tr>
<th>Condition</th>
<th>ICD-10</th>
<th>ICD-9</th>
<th>ICD-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSA</td>
<td>G47.3</td>
<td>3472</td>
<td></td>
</tr>
<tr>
<td>DIABETES</td>
<td>E10-E14</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>CHD</td>
<td>I20.0, I21, I22</td>
<td>410, 4110</td>
<td>410, 411,0</td>
</tr>
<tr>
<td>ASTHMA</td>
<td>J45, J46</td>
<td>493</td>
<td>493</td>
</tr>
<tr>
<td>COPD</td>
<td>J43, J44</td>
<td>492, 4912</td>
<td>492, 491,04</td>
</tr>
</tbody>
</table>

By combining codes from different registries, we generate phenotype endpoints. Finnish national version for each International Statistical Classification of Diseases (ICD)-codes were used. These ICD-code criteria are all regular expressions for a hierarchical search. OSA=obstructive sleep apnoea, CHD=coronary heart disease.