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ABSTRACT
Background  Respiratory disorders, including apnoea, 
are common in preterm infants due to their immature 
respiratory control compared with term-born infants. 
However, our inability to accurately measure respiratory 
rate in hospitalised infants results in unreported episodes 
of apnoea and an incomplete picture of respiratory activity.
Methods  We develop, validate and use a novel algorithm 
to identify interbreath intervals (IBIs) and apnoeas in 
preterm infants. In 42 preterm infants (1600 hours of 
recordings), we assess IBIs from the chest electrical 
impedance pneumograph using an adaptive amplitude 
threshold for the detection of breaths. The algorithm 
is refined by comparing its accuracy with clinically 
observed breaths and pauses in breathing. We develop 
an automated classifier to differentiate periods of true 
apnoea from artefactually low amplitude signal. We 
assess the performance of this algorithm in the detection 
of morphine-induced respiratory depression. Finally, we 
use the algorithm to investigate whether retinopathy of 
prematurity (ROP) screening alters the IBI distribution.
Results  Individual breaths were detected with a false-
positive rate of 13% and a false-negative rate of 12%. The 
classifier identified true apnoeas with an accuracy of 93%. 
As expected, morphine caused a significant shift in the IBI 
distribution towards longer IBIs. Following ROP screening, 
there was a significant increase in pauses in breathing 
that lasted more than 10 s (t-statistic=1.82, p=0.023). 
This was not reflected by changes in the monitor-derived 
respiratory rate and no episodes of apnoea were recorded 
in the medical records.
Conclusions  We show that our algorithm offers an 
improved method for the identification of IBIs and apnoeas 
in preterm infants. Following ROP screening, increased 
respiratory instability can occur even in the absence of 
clinically significant apnoeas. Accurate assessment of 
infant respiratory activity is essential to inform clinical 
practice.

INTRODUCTION
Immature respiratory control in premature 
infants results in irregular patterns of breathing, 
with frequent pauses in breathing of variable 
duration.1 Apnoea (often defined as a pause in 
breathing lasting more than 20 s, or shorter if 

associated with a bradycardia or oxygen desat-
uration2 3) is a common pathology of prema-
turity, affecting more than 50% of preterm 
infants.3 These events can be life-threatening, 
result in reduced tissue oxygenation4 and may 
have long-term effects including reduced cogni-
tive ability in childhood.5 6 Respiratory disor-
ders are a common reason for admission to a 
neonatal unit.7 An infant’s respiratory activity 
may also be affected by pathologies including 
sepsis,8 pharmacological interventions including 
caffeine9 10 (administered as a treatment for 
apnoea of prematurity) and opioids11 (respira-
tory depressants) and painful clinically indicated 
procedures such as retinopathy of prematu-
rity (ROP) screening.12 Despite the high prev-
alence of problems with respiratory control, 
clinical measurement of infant respiration is 
inadequate.13 14 While clinicians can rely on 
other physiological measurements to initiate 
the treatment of apnoeic episodes (eg, reduc-
tions in oxygen saturation and heart rate occur 
during prolonged pauses in breathing), self-
resolving apnoeas may be missed14 and more 
subtle changes in respiratory activity will not be 
observed. Accurate assessment of respiration 
is essential to inform clinical practice and to 
understand respiratory development in health 
and disease.

Key messages

►► Can we improve the detection of apnoeas and respi-
ratory activity in infants?

►► We develop, validate and use a novel algorithm to 
identify interbreath intervals (IBIs) and apnoeas in in-
fants, demonstrating improved sensitivity compared 
with the monitor-derived respiratory rate and clini-
cally documented apnoeas.

►► Respiratory disorders are common in preterm in-
fants but without better measurement of respiratory 
activity, we will not fully understand the pathology 
and improve the treatment of these disorders.
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Infants’ physiological data are continuously monitored in 
neonatal intensive care. Respiration is often computed by 
measuring changes in the electrical impedance of a patient’s 
thorax using the same electrodes that monitor the electro-
cardiograph (ECG). The use of impedance pneumography 
(IP) to assess respiratory function has known limitations, in 
particular susceptibility to noise, and was found by Lim et al to 
be less accurate than capsule pneumography;15 however, IP 
remains popular. Commercially available physiological moni-
tors use built-in algorithms to process the IP signal and calcu-
late the respiratory rate, often through the identification of 
peaks in the signal classified as breaths as a result of a speci-
fied amplitude threshold being exceeded.16–18 However, this 
approach is limited due to cardiac interference and artefacts 
caused by non-respiratory-related movements.13 16 17 More-
over, the manufacturers of many physiological monitors 
warn that their methods have yet to be validated for apnoea 
detection in infants.16 17 Research investigations have demon-
strated the limitations of these monitors with high false-alarm 
rates and missed apnoeas.13 14 Lee and colleagues previously 
developed an algorithm to remove cardiac-frequency noise 
from the IP signal and demonstrated improved performance 
compared with built-in physiological monitor algorithms in 
the detection of neonatal apnoeas with a false positive rate of 
5% and a false negative rate of 2.5%.13 However, they note 
that low amplitude signal related to factors such as poor elec-
trode positioning or shallow breathing can be falsely identi-
fied as apnoeas; in a sample of 114 built-in apnoea monitor 
alarms, Lee reported that almost two-thirds were found to 
be false by clinicians (and similar rates have been found in 
other studies19). While their algorithm reduced this false 
alarm rate substantially to 37%,13 artefactually low amplitude 
signal remains a problem in apnoea detection. Additionally, 
accurate assessment of interbreath intervals (IBIs), and not 
just the identification of apnoeas as in the work of Lee et al 
is needed to gain a better understanding of the effects of 
pathology and interventions on respiration. For example, 
the assessment of more subtle changes in IBIs will improve 
classification of underlying pathology and may allow for the 
early detection and prediction of apnoeas.20

Here we develop a new method for identifying IBIs 
and apnoeas (defined here as pauses in breathing of at 
least 20 s) from an infant’s IP signal. We then use the 
algorithm to check its sensitivity to detect respiratory 
depression following morphine administration. Finally, 
we investigate changes in IBIs following ROP screening.

METHODS
Study design
We designed, validated and tested our algorithm using 
three separate data sets. Data set 1 was used to determine 
the optimal threshold parameters for breath detection in 
the IP signals, by comparing the breaths identified with 
the algorithm to those manually annotated by clinical 
staff. Data set 2 was first used to verify that the param-
eters identified using data set 1 could detect pauses in 
respiration of at least 5 s. It was then used to develop 

and validate a classifier to detect true central apnoea as 
opposed to artefactually low amplitude signal. We then 
tested the algorithm, exploring its ability to identify 
morphine-induced respiratory depression, using a subset 
of data set 2. Finally, data sets 2 and 3 were used to eval-
uate changes in IBIs following ROP screening.

Study participants
A total of 42 infants were included in this study. Data set 
1 was collected as a subset of the MONITOR study.21 It 
comprises 181 sequences of approximately 40 breaths 
each (in total 7632 breaths), recorded from five preterm 
infants (postmenstrual age (PMA) at study range 30.6–
34.3 weeks). Each breath was manually annotated by clin-
ical staff in real time by visual observation of the infant. 
Data set 2 comprised physiological data collected during 
the Poppi trial, a single-centre, masked, randomised, 
placebo-controlled trial which investigated whether oral 
morphine was an effective and safe analgesic for proce-
dural pain in premature-born infants.11 Physiological 
data were collected for 24 hours before and after the 
clinical procedure—a heel lance followed by ROP screen-
ing—in 30 infants (15 received morphine, 15 received 
placebo, PMA at study 34–39 weeks). Data set 3 is a previ-
ously unpublished data set of seven infants (PMA at study 
30–37 weeks) whose physiological data were recorded 
before and after ROP screening. Further details for all 
studies are given in the online supplemental methods.

All data sets were collected at the Newborn Care Unit, 
John Radcliffe Hospital (Oxford University Hospitals NHS 
Foundation Trust, Oxford, UK). Written informed parental 
consent for all three data sets was gained. Approval was 
obtained from South Central Research Ethics Committee 
(REC) (13/SC/0597) for the MONITOR study, the Medi-
cines and Healthcare products Regulatory Agency (MHRA) 
and Northampton REC (15/EM/0310) for the Poppi trial 
and from South Central REC (12/SC/0447) for data set 3. 
All studies conformed to the standards set by the Declaration 
of Helsinki.

Physiological recordings
All infants were monitored using a Philips IntelliVue 
MX800 monitor, and physiological data were continu-
ously downloaded from the monitor using ixTrend soft-
ware (ixitos GmbH, Germany). Further details are given 
in the online supplemental methods.

Breath detection from the IP signal
The algorithm presented here to identify IBIs from the 
IP signal consists of three main steps (figure 1):
1.	 Removal of artefacts.
2.	 Application of an adaptive threshold to identify 

breaths.
3.	 Identification of true apnoeas using support vector 

machine (SVM) classification.
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The code for this algorithm is available from https://​
gitlab.​com/​paediatric_​neuroimaging/​identify_​ibi_​
from_​ip.​git. For further details of all parts of the algo-
rithm, see the online supplemental methods, figures 1,2 
and tables 1,2. Briefly, first, the IP signals were filtered to 
remove artefacts not related to respiration, for example, 
large-amplitude changes caused by movements of the 
infant, and cardiac-frequency noise; the filtering process 
also zeroed the IP signals. Second, individual breaths 
were identified from the IP signal as the point at which 
an adaptive threshold is crossed (an adaptive threshold, 
ie, one that is updated across the recording,22–24 was used 
to account for changes in the amplitude of the signal for 
a variety of physiological and non-physiological reasons, 
such as shallow breathing and changes in the electrode 
and infant positioning). We identified the optimal 
threshold parameters for breath detection by comparing 
the breaths detected by the algorithm for different 
parameters with recordings where individual breaths 
were annotated in real time by a clinical member of staff 
visually observing the infant’s breathing (data set 1). 
The optimal parameters were chosen to be values which 
achieved the best compromise between the percentages 
of false positives and false negatives. We then verified 
that these parameters were also suitable for detection of 
pauses in breathing with a duration greater than 5 s by 
comparison of pauses in breathing detected by the algo-
rithm with those that were retrospectively identified by 
two investigators (data set 2, first hour of recording, in 
15 infants).

Finally, a linear SVM classifier was used to identify true 
central apnoeas (defined here as IBIs≥20 s) as opposed 
to artefactually low amplitude signal. The model input 
features are the magnitude (root-mean-square) of the 
filtered IP signal during the apnoea, in the 10 s prior to 
the apnoea, and in the 10 s after the end of apnoea, and 
the change in heart rate and oxygen saturation in the 60 s 
from the onset of the apnoea. The model was trained and 
tested using labels (true apnoea/false alarm) provided 

by two investigators for all potential apnoeas identi-
fied in data set 2 (training set, 15 infants who received 
morphine, test set, 15 infants who received placebo); 
24% of potential apnoeas were classed differently by the 
two investigators and so were not included in the analysis.

Performance of apnoea identification
To compare the accuracy of our approach with the 
accuracy of the current standard, all periods where the 
monitor-derived respiratory rate reached 0 were viewed 
by two investigators (see online supplemental material) 
and rated according to whether the investigator thought 
this period was a true central apnoea or a false alarm 
(90% inter-rater agreement occurred here). To compare 
with Lee et al, all episodes of apnoea accompanied 
by bradycardia (<100 bpm) and oxygen desaturation 
(<80%) detected by the algorithm were compared with 
investigator ratings to calculate the false-positive rate. 
To calculate the false-negative rate, all episodes of brad-
ycardia (<100 bpm for at least 15 s) were identified in the 
recordings. Those that were not accompanied by a pause 
in breathing of at least 5 s (IBI >5) identified by the algo-
rithm were rated according to whether the investigator 
thought a pause (true positive) in breathing occurred 
during this episode.

Comparison with medical records
The time of apnoeas identified by our algorithm was 
compared with apnoeas documented in each infant’s 
medical records and nursing observation charts, specif-
ically on the apnoea/bradycardia/desaturation chart 
(the term medical records is used to describe both in the 
rest of the paper). Apnoeas are documented if the clin-
ical/nursing staff observe the infant having an episode 
of apnoea along with a description of how they were 
resolved, that is, self-resolving, requirement for increased 
oxygen, requirement for stimulation or requirement for 
resuscitation.

Figure 1  Schematic of the proposed algorithm for detection of interbreath intervals (IBIs) from the impedance pneumograph 
(IP) in infants.
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Use of the algorithm to evaluate respiratory depression 
following morphine administration
We tested the algorithm by examining the changes in 
the IBI distribution following morphine administration 
in the 15 infants in data set 2 who received morphine. 
In the Poppi trial, we previously demonstrated a signif-
icant decrease in the respiratory rate (recorded on the 
monitor) in the morphine-treated infants compared 
with the placebo-treated infants, with a peak decrease 
approximately 2.5 hours following drug administration.11 
We examined the IBI distribution in the 1 hour period 
prior to drug administration and the 1 hour period 
after the clinical procedure (from the end of the ROP 
screening, on average 1.3–2.3 hours after drug adminis-
tration), and calculated the mean, median and SD of the 
IBI distributions, the proportion of IBIs longer than 5 s 
and the proportion of IBIs longer than 10 s (time periods 
commonly used to assess pauses in breathing2). We 
compared this with the mean monitor-derived respira-
tory rate calculated for the same periods.

Use of the algorithm to evaluate changes in IBIs following 
ROP screening
We used the algorithm to investigate changes in the IBI 
distribution following ROP screening in a total of 22 
infants—the 15 infants who received placebo in data 
set 2 and the seven infants in data set 3. In the placebo-
treated infants, we compared the 1-hour period prior to 
placebo administration with the 1-hour period after the 
clinical procedure. In data set 3, we similarly compared 
the 1-hour after ROP screening with the 1-hour period 
2.3–1.3 hours prior to ROP screening. We also compared 
the 12-hour period before and after ROP screening in 
the subset of 19 infants with at least 12 hours of recording 
before and after ROP screening.

Statistical analysis
All data analysis was undertaken with MATLAB 2019b 
(MathWorks, USA). Model performance of the SVM clas-
sification was assessed with accuracy, false-positive rate, 
false-negative rate and Matthew’s correlation coefficient 
(MCC) using leave-one-subject-out cross-validation in the 
training set and independently in the test set using the 
model constructed from all infants in the training set. 
Differences in the IBI distribution and mean respiratory 
rate before and after morphine administration and ROP 
screening were compared using paired non-parametric 
t-tests with statistical significance assessed using permu-
tation testing (10 000 random permutations) performed 
using FSLs PALM software.25 P values were adjusted for 
multiple comparisons using Hochberg’s method in R 
(The R Project for Statistical Computing).

Patient and public involvement
A parent focus group, organised in collaboration with 
the charity SSNAP (Supporting the Sick Newborn and 

their Parents, a local charity based on the Newborn Care 
Unit at the John Radcliffe Hospital, Oxford), was held 
to discuss the Poppi Trial (data set 2) prior to the trial 
starting.

RESULTS
Optimising the adaptive threshold
A threshold of 0.4 times the SD of the filtered IP signal 
for the 15 previous breaths provided a good compro-
mise between the false-positive and false-negative rates of 
breath detection (figure 2A, online supplemental results, 
figure 3). At this threshold, a mean (across all recordings 
in data set 1) of 12% of the manually annotated breaths 
were missed by the algorithm (false negatives), and 13% 
of breaths detected by the algorithm were false positives.

We examined whether these threshold parameters 
could also accurately identify pauses in breathing of at 
least 5 s. Using the same parameters, 13 pauses out of the 
162 identified by both investigators were missed by our 
algorithm (false-negative rate: 8%) and 44 pauses out of 
the 229 identified by the algorithm were not identified 
by either investigator (false-positive rate: 19%). Varying 
the parameters confirmed that those selected achieved a 
good balance between false positives and false negatives 
(figure 2B).

Optimising apnoea detection using machine learning
Applying the adaptive threshold to all recordings from 
data set 2 identified a total of 164 potential apnoeas. Of 
these episodes, 68 (41%) were classified by both investiga-
tors as true apnoeas and 57 (35%) were classified by both 
investigators as false alarms (no agreement for 39 (24%) 
episodes). This already represents a major improvement 
in detection rate from the monitor-derived respiratory 
rate—of the 71 occasions for which the monitor-derived 
respiratory rate reached a value of 0 breaths per minute, 
two episodes were classified by both investigators as true 
apnoeas (3%) and 62 (87%) were classified by both inves-
tigators as false alarms.

An SVM classifier was trained to distinguish between 
episodes detected by the adaptive threshold and clas-
sify them as either true apnoeas or false alarms (exam-
ples shown in figure  3A,B). In the training set (15 
infants), using features derived from the IP signal alone 
(figure 3C, online supplemental methods), the classifier 
had an accuracy of 75% in the detection of true apnoeas 
(MCC=0.49, 62% of 69 episodes in the training set were 
true apnoeas). Including additional features related to 
the change in oxygen saturation and heart rate as inputs 
to the classifier and retraining it on the same training set 
increased the accuracy to 87% (MCC=0.74, false-positive 
rate=5%, false-negative rate=16%, figure  3D). Applying 
the best classification model to the test set gave an accu-
racy of 93% (MCC=0.87, false-positive rate=14%, false-
negative rate=0%, 25 of 56 episodes in the test set were 
true apnoeas), validating the model in this independent 
data set.
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For comparison with Lee et al,13 we performed three 
analyses. First, we assessed the performance of our 
algorithm for the detection of apnoeas with co-occur-
ring bradycardia and oxygen desaturation. Of 26 such 
episodes (in both training and test set) detected by our 
algorithm, all were classified as true apnoeas by both 
investigators (0% false-positive rate). Second, we assessed 
the performance of our algorithm for the detection 
of pauses in breathing associated with bradycardias. 
A total of 109 episodes of bradycardia occurred in our 
data. Of the 13 episodes of bradycardia where a pause in 
breathing was not detected by our algorithm, only three 
were thought to be associated with pauses in breathing 
(3% false-negative rate) by the investigators. Finally, of 
the 62 false alarms where the monitor-derived respiratory 
rate reached a value of 0 breaths per minute, 3 (5%) were 
detected as apnoeas using the adaptive threshold alone. 
After applying the SVM classifier, none of these were 
detected as apnoeas by our algorithm (0% false alarm 
rate).

Comparison with medical records
Of the 60 true apnoeas identified by our method, 88% 
were not recorded in the medical records. During the 
recording period, a total of 24 apnoeas were recorded 
in the medical records, the majority of which were asso-
ciated with an IBI of at least 10 s; however, four events 

were not associated with a prolonged pause in breathing 
detected by the algorithm but instead with a prolonged 
loss of signal due to artefacts. We hypothesise that such 
artefacts were caused by clinical intervention in response 
to the apnoea.

Use of the algorithm to evaluate respiratory depression 
following morphine administration
As expected, there was a significant decrease in the 
monitor-derived respiratory rate following morphine 
administration (p=0.0004, non-parametric permutation 
t-test corrected for multiple comparisons, n=15, table 1, 
figure  4A, n=15). This was reflected in the IBI distri-
bution, which showed a clear shift in the distribution 
towards longer IBIs following morphine administration 
(figure 4B), and significant differences in all IBI metrics 
assessed (figure 4C,D, table 1).

Use of the algorithm to evaluate changes in IBIs following 
ROP screening
There was a shift in the IBI distribution in the 1 hour 
following ROP screening towards longer IBIs (figure 4F), 
with a significant increase in the proportion of IBIs longer 
than 10 s (p=0.023, figure 4H, table 1, n=22). This was 
not reflected by a change in the monitor-derived respira-
tory rate (p=0.89, figure 4E, table 1). Moreover, there was 

Figure 2  Optimising the threshold for breath detection. To optimise the threshold parameters, we investigated the 
performance of different threshold values (defined as a multiple (α) of the SD of the IP signal across the previous N breaths) 
to identify individual breaths and pauses in breathing. Figures show the percentage of false positives (orange) and false 
negatives (purple) for different values of α (with N=15). (A) Values calculated by comparing algorithm-identified breaths with 
breaths manually annotated at the time of the recording by visual observation (data set 1). (B) Values calculated by comparing 
algorithm-identified pauses in breathing with pauses (of at least 5 s) manually annotated by two investigators (first hour of 
recording in 15 infants from data set 2). Error bars indicate mean and SD (across the recordings). Values are jittered on the 
X-axis so that false positive and false negative bars do not overlap. Grey shading indicates selected threshold parameters; 
with these parameters (α=0.4, N=15), there was the optimal balance between the percentages of false positives and false 
negatives in the identification of individual breaths (A). These parameters also achieved a good balance between false 
positives and negatives in the identification of pauses in breathing (B).
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a significant increase in the proportion of IBIs longer 
than 10 s in the 12 hours after ROP screening compared 
with the 12 hours before (p=0.037, t-statistic=1.77, n=19). 
No apnoeas were recorded in the medical records in the 
12 hours before or after ROP screening for any of these 
infants. Infant demographics are shown in online supple-
mental table 3.

DISCUSSION
We developed a new algorithm to detect IBIs from the IP 
signal in infants. Following the removal of cardiac arte-
fact from the IP signals using a method introduced in 
Lee et al13 we used an adaptive amplitude threshold to 
identify individual breaths, validating the threshold by 
comparison with visually identified breaths and pauses 
in breathing. Previous studies have reported that signals 
with low amplitude due to poor electrode placement 
or shallow breathing can be erroneously detected as 
episodes of apnoea. To overcome this problem, we used 
machine learning to identify true apnoeas from periods 
of artifactually low amplitude. We tested our algorithm 
by investigating changes in IBIs following morphine 

administration, observing a clear shift in the IBI distribu-
tion consistent with the reduction in respiratory rate seen 
on the infants’ patient monitors. Finally, we used our 
algorithm to investigate changes in IBIs following ROP 
screening. We observed a significant shift in the IBI distri-
bution following ROP screening which was not reflected 
by a change in the monitor-derived respiratory rate. This 
demonstrates the increased sensitivity of our method in 
detecting changes in respiratory activity, compared with 
the monitors and highlights the increase in physiological 
instability in infants following ROP screening.

Premature infants are born with immature cerebral and 
respiratory function compared with term-born infants, 
and consequently have a higher incidence of respiratory 
disorders. Current inadequacies in the measurement of 
respiration in infants leads to missed opportunities to 
better understand respiratory development and could 
potentially lead to suboptimal clinical treatment. For 
example, caffeine therapy, given for apnoea of prematu-
rity, is stopped in infants between 33 and 35 weeks PMA 
if the infant appears clinically stable.26 However, in 10% 
of infants, caffeine treatment is restarted,27 which may 

Figure 3  Using support vector machine classification to identify true apnoeas. (A) An example of a pause in breathing lasting 
longer than 20 s identified as a true apnoea. IP, the electrical impedance pneumograph after filtering to remove cardiac-
frequency noise and movement artefact. HR, heart rate in beats per minute. SpO2, oxygen saturation. RR, respiratory rate in 
breaths per minute, recorded by the infant’s patient monitor (black) and calculated using our algorithm (blue). Note that the 
RR does not reach zero on the infant’s patient monitor and so this episode does not lead to a monitor apnoea alarm. Grey 
shading indicates the period during which no breaths were detected by our algorithm. (B) A potential apnoea initially detected 
by the algorithm but classified by investigators as a false alarm. (C) The root mean square (RMS) of the IP signal before and 
during the apnoea (see Methods for further details). Red circles indicate episodes classified by both investigators as true 
apnoeas, and blue circles are those episodes classified by both investigators as false alarms. (D) Change in oxygen saturation 
and heart rate for true apnoeas (red) compared with false alarms (blue).
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Table 1  Changes in interbreath intervals following morphine administration and ROP screening

Mean before Mean after t-statistic
Uncorrected
p value

Corrected
p value

Morphine (n=15 infants)

 � Mean respiratory rate (bpm) 52.01 44.66 −3.54 0.0001 0.0004***

 � Mean IBI (s) 1.07 1.34 5.18 0.0001 0.0004***

 � Median IBI (s) 0.93 1.03 3.96 0.0012 0.0012**

 � SD IBI (seconds) 0.61 1.26 5.86 0.0001 0.0004***

 � IBI >5 s (%) 0.56 2.54 4.17 0.0004 0.0008***

 � IBI >10 s (%) 0.02 0.49 3.39 0.0002 0.0006***

ROP screening (n=22 infants)

 � Mean respiratory rate (bpm) 51.07 50.92 −0.14 0.89 0.89

 � Mean IBI (s) 1.09 1.12 1.32 0.20 0.81

 � Median IBI (s) 0.97 0.98 0.25 0.84 0.89

 � SD IBI (s) 0.56 0.66 2.45 0.021 0.10

 � IBI >5 s (%) 0.49 0.63 1.14 0.28 0.83

 � IBI >10 s (%) 0.02 0.06 1.82 0.0039 0.023*

Comparison of the respiratory rate (recorded by the patient monitor) and interbreath interval (IBI) distribution 1 hour before and after 
morphine administration and 1 hour before and after ROP screening. The table indicates the mean across all infants in each group, and the 
t-statistic and p-values for each comparison (permutation test). P-values were corrected for multiple comparisons using Hochberg’s method 
(*p<0.05, **p<0.01, ***p<0.001).
ROP, retinopathy of prematurity.

Figure 4  Interbreath intervals are altered by morphine administration and following ROP screening. (A–D) Respiratory 
rate and interbreath intervals (IBIs) in the 1-hour period prior to morphine administration compared with a 1-hour period 
after morphine administration (the 1-hour period immediately following ROP screening, approximately 1.3–2.3 hours after 
morphine administration) in the 15 infants who received morphine in the Poppi clinical trial. (E–H) Respiratory rate and IBIs 1 
hour before and after ROP screening in 22 infants. (A, E) Mean respiratory rate from the infants’ patient monitor. (B–D, F–H) 
Metrics calculated using the novel algorithm proposed in this paper to identify the IBIs. Black lines and points indicate the 
group mean (A, C, E, F) or median (D, H). (B) IBI distribution in the 1-hour period prior to (black) compared with 1.3–2.3 hours 
after morphine administration (red). (F) IBI distribution in the 1-hour period before (black) and after (red) ROP screening. Y-
axis indicates the probability of an IBI of duration greater than or equal to the X-axis value. Dotted line indicates the mean 
and shaded area the SD. (*p<0.05, **p<0.01, ***p<0.001, p-values corrected for multiple comparisons). ROP, retinopathy of 
prematurity.
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suggest that caffeine was withdrawn too early, exposing the 
infants to the adverse consequences of lack of treatment. 
We found that 88% of apnoeas identified using our algo-
rithm were not recorded in the medical records, consis-
tent with previous results highlighting the inaccuracies 
in clinical documentation of apnoea.14 28 29 While there 
are multiple reasons why apnoeas may not be recorded 
accurately in clinical observations, including the under-
recognition of apnoeas that come within periods of peri-
odic breathing, this substantial increase in the number 
of apnoeas identified using our algorithm demonstrates 
the potential for improving apnoea detection. Improved 
measurement of respiration is essential to optimise clin-
ical treatment of apnoea and could enhance treatment 
for other clinical conditions or procedures which alter 
respiration.

Many drugs will alter infants’ physiology. Our results 
confirm the applicability of the algorithm to analyse 
morphine-related respiration depression. Using this 
approach to investigate respiratory changes in relation 
to other drugs commonly prescribed in neonatal care 
may enhance our understanding of pharmacodynamics. 
Additionally, analysis of physiological recordings may be 
useful to develop predictive models to tailor individual-
ised care.30 31 We recently showed in a post-hoc analysis 
of the morphine-treated infants in the Poppi trial that we 
could predict the risk of adverse cardiorespiratory effects 
in individual infants from their baseline physiological 
stability.32 To date, measures of respiration are often not 
included in the development of predictive tools, which is 
likely due to the relatively poor quality of the currently 
available measurement tools.31 Here we provide a more 
accurate measure of IBIs, which will allow for more 
complex metrics, such as respiratory rate variability, to be 
computed.

ROP screening, an eye examination that is thought to 
be painful and distressing for infants,33 has previously 
been shown to increase the rate of apnoea in the 24–48 
hours following the screen from clinical chart review.12 
In an exploratory analysis, we demonstrated a signifi-
cant increase in the proportion of IBIs longer than 10 s 
in the 1-hour and 12-hour periods after ROP screening, 
which was not reflected by a change in the monitor-
derived respiratory rate. This demonstrates the improved 
sensitivity of our method for identifying changes in 
respiratory activity and suggests that even those infants 
without clinically significant apnoeas may still experience 
changes in respiratory activity with a shift towards longer 
IBIs. Further research in a larger cohort across a wider 
age range is needed to explore the relationship between 
an infant’s respiratory activity following ROP screening 
and changes with age. Identifying older infants that are 
at risk of physiological instability after ROP screening 
would be particularly important for those ex-premature 
infants who have ROP screening in outpatient clinics and 
may benefit from observation before leaving hospital.34

To remove cardiac-frequency noise from the IP signals, 
we used the approach of Lee and colleagues,13 which we 

modified (online supplemental table S2) predominantly 
due to the poor performance of the ECG R peak detec-
tion used by Lee et al in our data. Our algorithm had 
similar rates of false positives and negatives in the iden-
tification of apnoeas to those reported by Lee. Impor-
tantly, we also trained a classifier to identify true apnoeas 
compared with artifactually low amplitude signal; the 
classifier reduced the false alarm rate compared with 
using the adaptive threshold alone and to that reported 
by Lee and colleagues. Additionally, our algorithm used 
an adaptive threshold to identify individual breaths (with 
thresholds optimised with and without the prior removal 
of cardiac-frequency noise). Thus, unlike the algorithm 
of Lee, our algorithm can be used both in the identi-
fication of apnoea and also to examine changes in the 
pattern of IBIs of an infant.

By using an adaptive threshold which we validated for 
infants, our algorithm performed substantially better 
than the monitor derived respiratory rate. However, 
limitations of this study are the relatively small sample size 
and narrow age range of the infants included (from 30 
to 39 weeks PMA). Further validation should be carried 
out in younger infants. Moreover, this method identifies 
central apnoea; it cannot detect obstructive apnoea—al-
ternative measures, such as nasal air flow, are needed to 
detect these events. Additionally, apnoea that necessitates 
intervention by clinical staff may not be detected or the 
reported duration may be shorter than the true duration 
of the episode as interventions are likely to lead to large 
artefacts in the IP signal. While this is not a problem for 
clinical management, as the infant is receiving the appro-
priate clinical intervention to support their breathing, 
this should be taken into account in research studies so 
that apnoeas are not missed in the analysis.

In summary, despite the common occurrence of respi-
ratory pathology in preterm infants, current methods 
used to measure respiration are inadequate. We devel-
oped a new method to measure respiration in infants, 
demonstrating the improved sensitivity of the method 
compared with current standards; the increased sensi-
tivity provided by our algorithm could aid clinical teams 
in the care of infants. Furthermore, we identified a signifi-
cant increase in respiratory instability in infants following 
ROP screening. A better understanding of respiratory 
activity in infants is critical to improve neonatal care.
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Supplementary Methods 

 

Study design and participants 

Full details of data collection for the MONITOR study (Data set 1) are given in Jorge et al. 2019 

(1). These data were collected in five infants aged between 30 – 34 weeks postmenstrual age 

(PMA) at the time of study. Each infant’s physiological data were recorded for between 2-4 

days, during which time manual annotations of trains of approximately 40 breaths were 

recorded by a clinical member of staff who watched the infant. A total of 181 manual count 

trains from the five infants were assessed in the present study. 

 

Full details of the recruitment, trial design and trial procedures for Data set 2 from the Poppi 

(Procedural Pain in Premature Infants) trial are given in Hartley and Moultrie et al. 2018 (2–
4). Briefly, infants were aged between 34-39 weeks PMA at the time of study. Infants were 

given either oral morphine (100 µg/kg, n=15 infants) or a placebo (n=15) approximately 1 

hour prior to the clinical procedure - a medically-required heel lance for blood sampling and 

a retinopathy of prematurity (ROP) screening. As part of the trial, physiological data were 

recorded for approximately 24 hours before and after the clinical procedure (total duration 

of recordings: 1503 hours). 

 

Data set 3 comprised of data from 7 infants who were aged between 30-37 weeks PMA at the 

time of study and had been born at less than 32 weeks’ gestation or with a birthweight lower 
than 1501 g, fulfilling national criteria for ROP screening. This was a subset of infants collected 

as part of an ongoing study to investigate changes in brain activity and physiological activity 

following ROP screening. All 7 infants selected had recordings for at least 12 hours before ROP 

screening, and a minimum of 1 hour after ROP screening.  

 

For infants in both Data set 2 and 3, ROP screening was performed using binocular indirect 

ophthalmoscopy. Mydriatic eye drops (tropicamide 1% and phenylephrine 2.5%) were 

administered approximately 60 minutes and again at approximately 45 minutes before the 

examination. Prior to the examination the infant was swaddled, and immediately prior topical 

local anaesthetic (proxymetacaine 0.5%) eye drops were instilled.  

 

Physiological recordings 

Heart rate, oxygen saturation and respiratory rate (calculated by the monitor) were 

downloaded at a sampling rate of 1 Hz; the ECG was recorded at a sampling rate of 250 Hz 

from 3 electrodes placed on the infant’s chest, and the IP at a sampling rate of 62.5 Hz from 
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the chest electrodes. In Data set 2 the time of drug administration, heel lancing, and ROP 

screening, and in Data set 3 the time of ROP screening, were electronically marked on the 

physiological recordings by a researcher in real time. 

 

Development of a new algorithm to identify breaths from the IP signal 

 

The code for this algorithm is available from 

https://gitlab.com/paediatric_neuroimaging/identify_ibi_from_ip.git. 

 

Removal of noise and artefacts 

Cardiac-frequency noise is a particular problem affecting IP signals as the cardiac-synchronous 

signal can be erroneously detected as respiration, particularly during pauses in breathing 

(Supplementary Figure 1A, B). To remove this artefact, we used the approach of Lee and 

colleagues (5), whereby the timing of R-peaks is first identified from the ECG signal and from 

this the series of the time intervals between consecutive R-peaks, known as RR intervals, is 

computed and the R-peak interference is removed (see Lee et al. for further details). 

Empirically we found that the filter regime introduced by Lee et al. did not remove the R-peak 

interference from the IP signals in our data. This was primarily due to the poor performance 

of the Pan-Tompkins algorithm (6,7), which was used by Lee et al. to identify ECG R-peaks (5), 

on our IP data. Instead, we used signal envelopes to identify R-peaks, whereby the envelope 

of the ECG signal was generated using the MATLAB envelope function (which uses a spline 

interpolation of the signal maxima), in 5-second segments, enabling the identification of the 

R-peaks as the points of upper intersect between the envelope and the ECG signal. The RR 

intervals derived from the identified R-peaks were then stretched into 50 equally-sized steps, 

before resampling the IP signals in accordance with the RR intervals, as described above. Two 

infinite impulse response (IIR) notch filters were used to remove the 1 Hz and 2 Hz 

components (representing the R-peak interference) from the IP signal, before resampling the 

signal at 50 Hz. Following this, low frequency movement artefacts were removed using a high-

pass finite impulse response (FIR) filter with a cut-off frequency of 0.5 Hz. Finally, large 

amplitude artefacts in the ECG recording could lead to large amplitude artefacts in the IP 

signal when it is filtered using the ECG signal. Extreme outliers in the filtered IP signals were 

identified through visual assessment as signal values with amplitudes greater than 6 times 

the 90th percentile of the positive values of the filtered signal or less then 6 times the 10th 

percentile of the negative values of the filtered signal; these were replaced with these 

boundary values. This occurred in 0.0009% of the total signal recorded across all infants. The 

differences between the computation employed by Lee et al. and that used in this study to 

remove cardiac-frequency noise are summarised in Supplementary Table 2. 

 

The IP signal recorded on the monitor is hard-limited at upper and lower values. Gross 

movement artefact or periods of interference can lead to the signal being hard-limited for 

some period of time (example shown in Supplementary Figure 1C). To avoid these segments 

of hard-limited signal being erroneously detected as pauses in breathing in the filtered signal, 

segments of IP which corresponded to periods in which the original IP signal remained at a 

continuous maximum or minimum value for at least 1 second were removed. In addition, the 

2.5-second segments either side of these segments were removed.  
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Gross artefacts which affect the ECG (and so also the IP signal) are detected by the patient 

monitor, which will not calculate a heart rate value during this period. Therefore, segments 

of IP which corresponded to instances of missing estimates of HR, and the 2.5-second 

segments of the IP either side of these episodes, were also removed from the IP signal.  

 

Identification of breaths 

The timing of individual breaths was identified from the filtered IP signal as the point at which 

the signal crossed an amplitude threshold. The threshold, 𝜃, used to identify breaths was set 

as a proportion of the standard deviation of the IP signal across the previous N breaths. That 

is 𝜃 = 𝛼𝜎(𝐼𝑃𝑁), where 𝐼𝑃𝑁 is the IP signal for the N previous breaths, and 𝛼 is a scaling factor. 

We identified optimal values of 𝛼 and N that achieved a balance between the number of false 

positives and false negatives in the identification of individual breaths and pauses in breathing 

(see Threshold optimisation). The first 600 seconds of the IP signal were analysed using a fixed 

threshold of 𝜃 = 𝛼𝜎(𝐼𝑃|0600), and the adaptive threshold was used for the rest of the 

recording (except for Data set 1 – see Threshold optimisation). Threshold crossings occurring 

within 0.3 seconds of the previous crossing were removed. 

 

From this time series of breaths, the time intervals between consecutive breaths were 

computed giving the sequence of inter-breath-intervals (IBIs) for each infant. An IBI of 5 

seconds or more was defined as a pause in breathing. Pauses in breathing which occurred 

within 2 seconds of a previous pause were combined and counted as a single pause. Also, as 

it is possible that a pause in breathing could begin during a period in which the IP data has 

been removed or is missing, IBIs of 5 seconds or more occurring immediately before or after 

a gap in IP data were included in the IBI series.  

  

The time series of breaths was also used to compute the infants’ respiratory rate shown in 

Figure 3. The respiratory rate was calculated from the number of breaths in a 20 second 

sliding window, moved through the IP signal with a 1-second increment; thus, a respiratory 

rate of 0 corresponds to an apnoea lasting 20 seconds or more. 

 

Threshold optimisation 

To determine the optimal threshold parameters for the identification of breaths in the infants’ 
IP signals we assessed the algorithm’s ability to detect individual breaths using Data set 1 for 

different levels of 𝛼 and N. The manually annotated breaths were defined as true breaths, 

and false negatives defined as true breaths not identified by the algorithm. False positive 

breaths were defined as the breaths identified by the algorithm, but not annotated by clinical 

staff. Manual annotations were not necessarily annotated at a specific time within the breath 

wave and so the time of the manual annotations and the threshold crossings would not be 

expected to match exactly. However, the timings would be expected to be sequential i.e. 

there should only be one manual breath annotation between any two threshold crossings and 

vice versa. Therefore, the presence of two successive manual breath annotations without a 

threshold crossing between them indicated that the algorithm did not identify a breath (false 

negative), whilst two successive threshold crossings without a manual breath annotation 

between them indicated that the algorithm identified a false positive breath. The IP signal 

epochs from Data set 1 were each only approximately 180 seconds long (60 seconds before 

and approximately 80 seconds after a train of manual counts), so the threshold was initially 

applied to the first 40 seconds of data, before using an adaptive threshold. Initially, the 
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optimal value for 𝛼 was identified as that which achieved a balance (i.e. similar number) 

between the false positive and false negative rates. In this assessment 𝛼 was varied from 0.1 

to 0.7 (with increments of 0.05) and a fixed value of N=15 was used. Having identified an 

optimal value for 𝛼, N was then varied to identify an optimal value for this parameter (which 

was identified as N=15).  

 

To verify that the chosen threshold parameters were also able to accurately identify pauses 

in breathing we compared manual ratings of pauses in breathing with pauses in breathing 

identified by the algorithm. Pauses in breathing of greater than 5 seconds were identified in 

the first hour of the recordings in 15 of the infants from Data set 2 (of the 15 infants studied, 

8 received morphine and 7 received placebo, though no drug had been given during the 

section of the recording assessed) by two investigators experienced in reviewing neonatal 

physiological data. The investigators identified pauses in breathing through visual assessment 

of the infants’ original IP signals recorded from the monitor and the filtered IP signals (with 

cardiac-frequency noise and movement artefacts removed). Pauses in breathing where there 

were single oscillations (possibly breaths/gasps or possibly artefact from movement or 

stimulation) within a pause were identified as one pause. The investigators also reviewed the 

ECG, heart rate, and oxygen saturation traces for the infant, though the identification of 

pauses in breathing was primarily based on their visual inspection of the IP signals as short 

pauses in breathing do not necessarily affect the infant’s heart rate or oxygen saturation.  

 

For each threshold parameter, the pauses in breathing identified by the algorithm were 

compared to those identified by the two investigators; the pauses found by both investigators 

were defined as true pauses. The false negative rate was defined as the percentage of true 

pauses not identified by the algorithm. The false positive rate was defined as the percentage 

of pauses identified by the algorithm but identified by neither investigator. 

 

Occasionally, due to technical difficulties, periods occurred where the ECG signal was not 

recorded but the IP signal was (0% in Data set 1, 0.3% of the total ECG record in Data set 2, 

0.4% of the total record in Data set 3). Thus, during these periods, cardiac-frequency noise 

could not be removed from the IP signal. To assess the performance of the adaptive threshold 

without the removal of cardiac-frequency noise we also applied the algorithm to the same 

sections of the recording (which had ECG recorded throughout), for both the identification of 

breaths (Data set 1) and the identification of pauses in breathing (first hour of recordings in 

15 infants from Data set 2) but did not filter out the cardiac noise.  

 

Accurate identification of apnoeas using machine learning 

Shallow breathing or poor electrode placement can lead to a low amplitude IP signal which is 

erroneously detected as a prolonged pause in breathing. We used machine learning to 

identify episodes of central apnoea versus periods erroneously detected as a prolonged pause 

in breathing. To develop the model, two investigators viewed the original IP signal, the filtered 

IP signal, the ECG, the heart rate and the oxygen saturation for 30 seconds before and after 

the start of all potential apnoeas identified in the entire recordings from all 30 infants in Data 

set 2. We defined here a central apnoea as a pause in breathing lasting 20 seconds or longer, 

so the investigators evaluated all periods for which no threshold crossings occurred for at 

least 20 seconds. The investigators determined whether they considered each potential 

apnoea to be a true apnoea or a false alarm (i.e. whether there was low amplitude signal for 
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another reason such as shallow breathing or poor electrode placement). The investigators 

viewed a total of 164 episodes of potential apnoea from the 30 infants and had an inter-rater 

agreement of 76%.  

 

A support vector machine classification model was developed using the data from the 15 

morphine-treated infants (training set), with all 69 episodes for which the investigators 

agreed, with 62% of these episodes classified as true apnoeas and the other 38% being 

classified as false alarms. Model performance was assessed using leave-one-subject-out 

cross-validation (i.e. all episodes for a subject were removed in a single fold). Having trained 

the model on the data from the morphine-treated infants, it was then tested in the data from 

the 15 placebo-treated infants (test set). 

 

The model was constructed with 5 features: 

1. The root-mean-square (RMS) of the IP signal during the episode (possible apnoea). 

The RMS was calculated in 1-second intervals from 1 second after the last annotated 

breath, until 19 seconds after the last annotated breath (i.e. up until the point 

immediately before the pause in breathing is classed as an apnoea according to our 

definition of at least 20 seconds in length), and the median of the RMS values across 

all intervals selected. The first and last second were removed as the IP signal can be 

affected by the edge of the last/first breaths as the time of first/last breath is selected 

as the point at which the threshold is crossed (Supplementary Figure 2A). The median 

value from the RMS values of the filtered IP signal was computed for each 1-second 

interval, as movement artefact in the IP signal could increase a sub-set of the RMS 

values even if a real apnoea was occurring (Supplementary Figure 2B). 

2. The RMS value of the IP signal in the 10 seconds prior to the start of the episode. 

3. The RMS value of the IP signal in the 10 seconds after the end of the episode. 

4. The change in oxygen saturation calculated as the difference between the mean 

saturation in the 10 seconds prior to the start of the episode and the minimum value 

in the 60 seconds following the start of the episode. 

5. The change in heart rate calculated as the difference between the heart rate in the 10 

seconds prior to the start of the episode and the minimum value in the 60 seconds 

following the start of the episode. 

Features 1-3 were included as it was noticed that true apnoeas often present with a marked 

decrease in the amplitude of the IP signal during the apnoea, which is not observed in false 

alarms (Figure 2A, B). 

 

This model included input features computed before and after the apnoea to optimise it for 

retrospective apnoea identification. To determine whether this method could also potentially 

be used in prospective apnoea detection, we also adjusted the model to include only features 

up to 20 seconds from the start of the apnoea (including features 1 and 2, and 4 and 5 up to 

20 seconds from the start as opposed to 60 seconds), see Supplementary Results. 

 

Performance of apnoea identification 

To compare the accuracy of our approach with the accuracy of the current standard, all 

periods where the monitor-derived respiratory rate reached 0 were viewed by two 

investigators and rated according to whether the investigator thought this period was a true 

central apnoea or a false alarm. The investigators viewed the original IP signal, the filtered IP 
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signal, the ECG, the heart rate and the oxygen saturation for 30 seconds before and after 

the start of all periods where the monitor-derived respiratory rate reached 0 from all 30 

infants in Data set 2. 

 

Supplementary Results 

 

Optimising the adaptive threshold – without removal of ECG artefact 

Due to technical problems, the IP signal is occasionally recorded without the ECG signal and 

so cardiac-frequency noise cannot be removed from the IP signal. We assessed the 

performance of the adaptive threshold at different levels without the removal of ECG artefact. 

With the removal of ECG artefact from the signal, the optimal threshold parameters were 

found to be 𝛼 = 0.4 and N=15 (see the Results). With these parameters and without the 

removal of ECG artefact, 9% of the manually-annotated breaths in Data set 1 were missed by 

the algorithm, whilst 13% of the breaths identified by the algorithm were false positives. 

However, a threshold of 0.7 times the standard deviation (i.e. 𝛼 = 0.7) achieved a better 

balance between false positive and false negative rates without the removal of ECG artefact, 

13% in each case (Supplementary Figure 4A). In the assessment of pauses in breathing, at a 

threshold of 0.4 times the standard deviation of the IP signal computed using the previous 15 

breaths, 31% of true pauses were missed by our algorithm but only 12% of pauses identified 

by our algorithm were false positives. However, a threshold of 0.5 times the standard 

deviation computed using the previous 15 breaths, without the removal of ECG artefact, 

achieved a better balance between the false negative and false positive rates, at 21% and 22% 

respectively (Supplementary Figure 4B). Values of 𝛼 = 0.5 and N=15 were used in the 

subsequent analysis in periods where no ECG was present (0.3% of the total ECG record in 

Data set 2, 0.4% of the total record in Data set 3). Values of 𝛼 = 0.4 and N=15 were used in 

the results when the ECG signal was present. 

 

Accurate identification of apnoeas using machine learning 

The model presented in the main text included input features computed before and after the 

apnoea to optimise it for retrospective apnoea identification. Adjusting the model to only 

include features up to 20 seconds after the start of the episode still achieved an accuracy of 

74% (MCC=0.43), suggesting this model could be further developed to improve prospective 

apnoea identification. 
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Supplementary Figures 

 

 
Supplementary Figure 1: Artefact removal. Examples of artefact removal from the IP (impedance 

pneumograph) signal. IP indicates the original IP signal recorded from the monitor. Filtered IP is the IP signal 

following removal of movement and cardiac-frequency artefacts. Time is given from the start of the epoch. (A) 

An example of cardiac-frequency noise which becomes particularly prominent during the period of apnoea – 

between approximately 15 and 25 seconds, and 40-50 seconds. (B) Ongoing cardiac-frequency noise during a 

period of regular breathing (the smaller amplitude oscillation on top of the higher amplitude respiratory 

oscillation). (C) An example of movement artefact. During periods of gross movement artefact or poor signal 

quality the IP signal hard limits at an upper or lower value, with the signal staying equal to this value for some 

period. Periods such as this (and 2.5 seconds either side) were removed from the signal for analysis so they were 

not incorrectly identified as pauses in breathing. 
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Supplementary Figure 2: Identification of true apnoeas using machine learning. Examples of apnoeas identified 

from the electrical impedance pneumograph (IP) signal. IP indicates the original IP recorded from the monitor. 

Filtered IP shows the IP signal following removal of cardiac-frequency noise and movement artefact. Grey 

shaded boxes indicate the periods identified as apnoeas using the filtered IP. Time is given from the start of the 

epoch. (A) An example showing clear ‘edge’ effects of the IP signal at the start and end of the period identified 

as an apnoea, as the period identified relates to when the signal crosses a threshold (i.e. at the edges of the 

apnoea the amplitude of the IP signal is higher than during the rest of the apnoea). For the machine learning 

algorithm the first second and last second of the signal during the apnoea are removed from the analysis to 

avoid these edge effects. (B) An example where a single oscillation (possibly movement artefact) occurs in the 

middle of the apnoea. For this reason, in the machine learning analysis, the median value of the filtered IP signal, 

computed from the RMS values for each 1-second interval during the apnoea, is used. 

 

 

 
Supplementary Figure 3: Optimising the adaptive threshold according to the number N of previous breaths. 

Percentage of false positives (orange) and false negatives (purple) at different threshold values according to the 

number of previous breaths used to calculate the threshold. The threshold is set as 0.4 times the standard 

deviation of the signal from the previous N breaths. Error bars indicate mean and standard deviation. Values are 

jittered slightly on the x-axis so that false positive and false negative bars do not overlap. Grey shading indicates 

selected threshold parameters; at this threshold there was the optimal balance between the numbers of false 

positives and negatives. 
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Supplementary Figure 4: Optimising the adaptive threshold for the impedance pneumograph signal without 

removal of cardiac-frequency noise. Percentage of false positives (orange) and false negatives (purple) for 

different values of 𝛼 (with N=15). (A) Values calculated in relation to identification of individual breaths and 

compared with breaths manually annotated at the time of the recording by visual observation of the infant (Data 

set 1). (B) Values calculated in relation to identification of pauses in breathing compared with pauses (of length 

at least 5 seconds) manually annotated by two investigators from viewing the signals (Data set 2, first hour of 

every recording). Unlike Figure 2 cardiac-frequency noise was not removed from the signals prior to the analysis 

shown here. In this case, slightly higher threshold parameters achieved the optimal balance between the 

percentages of false positives and false negatives (see Supplementary Results). Error bars indicate mean and 

standard deviation. Values are jittered slightly on the x-axis so that false positive and false negative bars do not 

overlap. Grey shading indicates optimal value of 𝛼 without removal of cardiac-frequency noise in both cases – 

the best compromise between the numbers of false positives and negatives. 
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Supplementary Tables 
 

 
Procedure Data set used  

Optimising the adaptive threshold (i) by 

comparison with manually annotated breaths 

Data set 1 

Optimising the adaptive threshold (ii) by 

comparison with pauses in breathing of at least 

5 seconds 

First hour of recording from 15 infants (8 

allocated to receive morphine, 7 allocated to 

receive placebo) in Data set 2. The first hour of 

recording was chosen as this was not included in 

further analysis investigating morphine or ROP-

induced changes in the IBI distribution. No drug 

had been given during this period. 

Training of classification algorithm to identify 

true apnoeas versus false alarms 

Morphine-treated infants in Data set 2 (n=15) 

Test set for classification algorithm to identify 

true apnoeas versus false alarms 

Placebo-treated infants in Data set 2 (n=15) 

Testing the algorithm - evaluating respiratory 

depression following morphine administration 

Morphine-treated infants in Data set 2 (n=15) 

Using the algorithm - evaluating changes in IBIs 

following ROP screening 

Placebo-treated infants in Data set 2 and Data 

set 3 (n=22) 

 
Supplementary Table 1: Summary of where each data set was used.   
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Step Current Study Lee et al. (2012)  

1 Derive RR intervals from the ECG through the 

application of envelopes to the ECG signal. The 

R-peaks are found as the points of intersect 

between the envelope and the ECG signal. 

Derive RR intervals using the Pan-Tompkins R-

peak detection algorithm (6,7). 

2 Stretch or compress each RR interval such that 

each interval is made up of 50 steps. 

Stretch or compress each RR interval such that 

each interval is made up of 30 steps. 

3 Resample the IP in accordance with the 

modified RR interval series. 

Resample the IP in accordance the modified RR 

interval series. 

4 Apply a notch filter to remove the 1 Hz 

components from the IP, which now represent 

the R-peak artefact.  Apply Butterworth band-stop filters to remove R 

peak artefacts. 5 Apply a notch filter to remove the 2 Hz 

components from the IP, which represent the 

second harmonic of the R-peak artefact. 

6 Resample the IP to 50 Hz Resample the IP to 60 Hz 

7 High-pass filter the IP to remove <0.5 Hz noise. High-pass filter the IP to remove <0.4 Hz noise 
 

Supplementary Table 2: Filtering of the impedance pneumograph. Differences between the computations 

employed in the filtering of the IP signals in this study, and those employed by Lee et al. (5), primarily required 

due to the poor performance of the Pan-Tompkins R-peak detection in our data. The algorithm described by Lee 

and colleagues was constructed to remove cardiac interference from the IP signals and detect apnoeas. We use 

this algorithm to remove cardiac interference in our data. Additionally, we trained an SVM classifier to 

distinguish between true apnoeas and low amplitude artefacts and validated an adaptive threshold to identify 

individual breaths. 

 

  

Gestational age at birth (weeks) – median (IQR) 28.1 (27.1 – 29.3) 

Postmenstrual age at study (weeks) – median (IQR) 34.9 (34.3 – 36.1) 

Weight at birth (g) – median (IQR) 1100 (889 – 1228) 

Weight at study (g) – median (IQR) 2080 (1923 – 2206) 

Sex – Female/Male – number (%) 12 (55) / 10 (45) 

Normal vaginal delivery – number (%) 7 (32) 

Assisted delivery – number (%) 1 (4) 

Caesarean delivery – number (%) 14 (64) 

Apgar score at 10 minutes – mean (SD)* 8.9 (1.5) 

Infants ventilated during admission – number (%) 15 (68%) 

Number of days ventilated in those ventilated – median (IQR) 2 (1.5-11.5) 

Supplementary Table 3: Demographic details for the 22 infants where inter-breath interval distributions are 

compared before and after ROP screening. IQR – interquartile range, SD – standard deviation, * Apgar scores 

were missing from the medical records of 2 infants. 
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