Methods 10 databases were searched for quantitative and qualitative English language articles reporting at least one of the behaviours and their impact on priori primary and secondary outcomes (figure 1) in adolescents (11-18 years) with type 1 diabetes. There were no restrictions on article publication dates or study design. Articles were subjected to title and abstract screening, full text screening, data extraction and quality assessment.

Results In total 9922 articles were identified from the initial search with 92 articles included for data extraction after title, abstract and full text screening, (figure 2). Data analysis is ongoing, where possible a meta-analysis (quantitative), meta-aggregation (qualitative) and mixed-methods synthesis (quantitative and qualitative narrative summary) will be conducted.

Discussion This extensive investigation on the full spectrum of 24-hour movement behaviours will identify the different, and perhaps complimentary, physiological and psychosocial impacts of each behaviour.

REFERENCES

AHI DOES NOT ADEQUATELY REFLECT OSA SEVERITY
Emma Lombard*, Simon Merritt. Conquest Hospital, East Sussex Healthcare NHS Trust, Hastings, UK
10.1136/bmjresp-2021-bssconf.20

Introduction Obstructive sleep apnoea (OSA) results in significant cardiovascular consequences. Level of hypoxia and degree of sympathetic activation are postulated to play a role.

The Apnoea Hypopnoea Index (AHI) is used as a tool to assess severity of OSA. However, it does not measure depth or duration of hypoxia and may underestimate the risk of complications. The aim of this study was to evaluate the relationship between AHI and the burden of hypoxia.

Method This was a retrospective study, using data from nocturnal sleep studies. Equal numbers of each OSA severity, defined by AHI, were selected consecutively from 122 adult patients who underwent sleep studies between Dec 2020 and May 2021. Demographic data, AHI and percentage time spent with oxygen saturations <90% (%T<90%) were recorded. Excel was used for analysis and Spearman’s rank used to calculate the correlation coefficient (rho, ρ).

Result AHI was compared to %T<90% (figure 1) showing a moderate positive correlation ($r=0.6$). Subgroup analysis demonstrated a moderate correlation in the severe group ($r=0.67$), whereas only a very weak correlation in the moderate and mild groups ($r=0.19$ and 0.16 respectively). There was no significant difference in the %T<90% in the moderate group compared to those with an AHI 30–60 (mean (SD) 14.86 (20.15) and 17.96(17.91) $P=0.067$) despite these patients having different categories of OSA severity.

Conclusion This study suggests that AHI inadequately reflects degree of hypoxic burden, and therefore is an incomplete measure of OSA disease severity. The results demonstrate patients with moderate OSA have a burden of hypoxia similar to many of those with severe disease. In these patients, AHI may inadequately reflect the risk of future complications resulting from hypoxia. Further research is needed to develop an alternate measure of severity to accurately reflect this risk, a composite of AHI and hypoxic burden would be a first step.

INSMNIA PREVALENCE IN CONFINED ELITE ATHLETES
10.1136/bmjresp-2021-bssconf.21

The demands of training, competition stress, and impact of frequent (inter)national travel are assumed to contribute to the shorter night-time sleep durations and poor overall sleep quality reported for elite athletes (1–3). However, systematically exploring this assumption is challenging, since a robust evaluation of sleep quality and practices in the presence and absence of sports participation would interrupt elite sports careers. The COVID-19 pandemic resulted in a cessation of international sport, and the home confinement of athletes. Using baseline data from an ongoing (pre-pandemic) study of athlete sleep, we compared the insomnia levels, sleep quantity and practices of elite athletes when exposed to, and deprived of

Insomnia disorder categories

Good Sleeper
Resolved insomnia
Confinement insomnia
Persistent insomnia

16%
19%
11%
54%

Abstract 24 Figure 1 Insomnia disorder categories; good sleeper (did not score for insomnia disorder); resolved insomnia (scored for insomnia disorder in pre-confinement); confinement insomnia (scored for insomnia disorder in confinement); and persistent insomnia (scored for insomnia disorder in pre and during confinement)
potentially athlete-specific sleep risk factors of training, competition, and travel. Participants (competition level ≥ national) completed baseline (prior to 23rd March 2020) and home confinement (commenced 5th May 2020) assessments. The 10-section online survey included: the PSQI; MCTQ (Munich Chronotype Questionnaire); rMEQ (Reduced Morningness-Eveningness Questionnaire; FIRST (Ford Insomnia Response to Stress Tests); PSAS-C (Pre-Sleep Arousal Scale-C); and GAD-7 (Generalised Anxiety Disorder 7-item scale), with additional expert-designed questions addressing sleep practices and DSM-5 insomnia symptoms.

Differences (N=74) between baseline and confinement responses were calculated with t-tests, Wilcoxon and McNemar’s tests. There was a reduction in prevalence of insomnia symptoms (75% vs 49%; p=0.002) and insomnia disorder (35% vs 28%; p=0.286) during confinement. Increased during confinement was total sleep time (7h36min vs 8h10min; p<0.0001) and total time in bed before training days (8h48min vs 9h34min; p<0.0001). Training load (minutes/daily) was reduced (4h14min vs 3h16min; p<0.0001) in confinement (table 1). 19% of participants resolved pre-confinement insomnia disorder during confinement (figure 1).

During confinement, participants registered lowered prevalence of insomnia and training load. This research offers valuable insight on the insomnia profile of confined elite athletes, also addressing the role of the athletic lifestyle in insomnia prevalence.