Physical and affective components of dyspnea are improved by pulmonary rehabilitation in COPD

Jean-Marie Grosbois,1 Sarah Gephine,2,3 Maeva Kyheng,4 Julie Henguelle,5 Olivier Le Rouzic,5 Didier Saey,3 François Maltais,3 Cecile Chenivesse5,6

ABSTRACT
Background Dyspnea is a multidimensional experience of breathing discomfort, but its affective dimension is infrequently assessed in people with chronic obstructive pulmonary disease (COPD). We evaluated the effectiveness of a home-based pulmonary rehabilitation (PR) programme on the physical and affective components of dyspnea assessed by the Dyspnea-12 (D-12) questionnaire. We also determined the baseline characteristics that contributed to the change in D-12 scores.

Methods In this retrospective study, 225 people with COPD (age, 65±11 years; forced expiratory volume in 1 s (FEV1), 35±15% of predicted value) were enrolled into a person-centric home-based PR, consisting of a weekly supervised 90 min home session during 8 weeks. D-12 questionnaire, health status, anxiety and depressive symptoms, exercise tolerance and general fatigue were assessed at baseline (M0), at the end of PR programme (M2), and 6 (M6) and 14 months (M14) after M0. Multivariable analysis of covariance (ANCOVA) models were performed to identify the baseline characteristics that contributed to the change in D-12 scores.

Results Both physical and affective components of dyspnea and all the other outcome measures were improved at M2, M6 and M14 compared with baseline (p<0.05). Baseline body mass index was the only significant independent predictor of the changes in physical dyspnea score, while the change in the affective dimension of dyspnea after PR was associated with FEV1, anxiety symptoms and exercise tolerance (6 min step test). However, since these variables had only a small impact on the changes in D-12 questionnaire scores, results from the ANCOVA analysis should be taken cautiously.

Conclusion Both physical and affective components of dyspnea were improved at short term and long term, by 8 weeks of individualised home-based PR. The present results support the importance of assessing dyspnea as a multidimensional experience during PR, warranting replication by robustly designed randomised and controlled studies.

INTRODUCTION
Dyspnoea is a subjective experience of breathing discomfort,1 observed during daily living activities in 80% of people with chronic obstructive pulmonary disease (COPD).2 In addition to promoting a sedentary lifestyle, dyspnoea is an important contributor to fear and anxiety,3 resulting in poor health-related quality of life4 and inappropriate health behaviours.5 Dyspnoea is a multidimensional experience and recent knowledge of its pathophysiological mechanisms showed the importance of differentiating sensory (qualitative, quantitative), physical (the impact generated in daily life) and affective (anxiety, distress) domains of dyspnoea.1 In COPD, a large battery of questionnaires can be used to evaluate dyspnoea.6-8 In the most recent meta-analyses...
reporting the effects of pulmonary rehabilitation (PR) in people with COPD, only the sensory and physical dimensions of dyspnoea were evaluated, mainly with the Borg and Visual Analogue Scales for the former dimension and the Chronic Respiratory Disease Questionnaire and the modified Medical Research Council scale (mMRC) for the latter dimension. This approach does not fully capture the complexity of dyspnoea by neglecting its affective dimension. Multidimensional tools have been developed to address this issue, such as the Dyspnoea-12 questionnaire (D-12) or the Multidimensional Dyspnoea Profile questionnaire. D-12 is a validated self-reported questionnaire including 12-item of breathlessness descriptors chosen by people with chronic respiratory diseases, that provides an evaluation of both physical and affective components of dyspnoea during daily life activities.

Although the effectiveness of PR to improve the physical dimension of dyspnoea has been repeatedly confirmed in COPD, its possible effects on its affective dimension (ie, associated with an emotional response of anxiety and/or distress) is uncertain. The focus on the affective dimension is important since the concomitant presence of anxiety and depressive symptoms and dyspnoea may lead to higher numbers of exacerbations, hospitalisations, PR withdrawals and even reduced survival. In addition, evaluating the long-term benefits of PR on the affective component of dyspnoea has been recently determined as a research priority. Furthermore, in individuals for whom the pharmacological treatment is optimal, anxiety and depressive symptoms are commonly reported as the strongest determinants of dyspnoea. Other factors such as body mass index, severity of the airway obstruction, age, sex, comorbidities and physical condition had independent effects on the sensory and physical domains of dyspnoea in people with chronic respiratory diseases. However, less is known regarding the factors associated with the affective dimensions of dyspnoea and their impact on dyspnoea changes following PR has never been reported. Targeting these factors could help for designing the most effective intervention for improving physical and affective dyspnoea in COPD.

Therefore, the aim of the study was twofold: (1) evaluate the short-term, medium-term and long-term effects of a home-based PR programme on the physical and affective components of dyspnoea assessed by the D-12 questionnaire; (2) determine the baseline characteristics that are associated to the change in affective and physical components of dyspnoea after PR. We hypothesise that, (1) both physical and affective components of dyspnoea will be improved by the home-based programme; (2) changes in physical and affective components will not be driven by the same baseline variables, supporting the importance of a multidimensional evaluation of dyspnoea.

METHODS
Study design and participants
Data from consecutive people with COPD undergoing a home-based PR programme in the North of France from September 2014 to January 2018 were retrospectively analysed. Participants were referred to the home-based PR programme by their pulmonologist who was responsible for documenting the presence of COPD according to the Global initiative for chronic obstructive lung disease classification system and validating that the participants were absent of cardiovascular contraindications to exercise training. Despite optimised pharmacological treatments, participants were referred to the programme because of symptomatic dyspnoea, exercise intolerance, difficulties in performing daily life activities or in managing the disease. Exclusion criteria were forced expiratory volume in 1 s (FEV₁) >80% of predicted value, dementia or poorly controlled psychiatric illness, neurological sequelae, or bone and joint diseases preventing physical activity. All participants signed a written informed consent prior the start of the programme.

Patient involvement
With an exception for the choice of outcomes measures, patients and their caregivers were involved in the design and conduct of the study. Since the home-based PR programme was person-centric, patients chose the physical activity, education and self-management programme according to their needs. Once the study has been published, results will be available to patients through a dedicated website (www.formactionsante.com).

Home-based PR programme
All participants received a home-based PR programme tailored to each patient’s individual needs as previously described. Briefly, the PR programme was entirely conducted at home and consisted of a weekly supervised 90 min home session, during 8 weeks. The programme started with an evaluation of the patient’s needs and expectations leading to the formulation of a personalised plan. Physical training, educational, motivational and self-management plans were designed and implemented through a collaborative process between the PR team, the patient and his/her caregiver. Apart from the weekly visit of the team member who supervised the sessions during the first 8 weeks, participants were expected to perform, on their own, personalised physical training and self-management plan the rest of the week and during the 1-year follow-up period, during which there was no visit by the PR team apart from those mandated to complete the evaluation at 8 and 14 months after PR.

Education and self-management interventions were person-centric, thus, adapted to respond to individual’s needs, barriers and personal goals. The centred-patients education topics covered pathophysiology of lung disease and comorbidities, medication and its use (bronchodilator, oxygen), breathing and airway clearance strategies,
Prevention and recognition of exacerbations, physical exercise, stress management and emotional responses related to the disease, nutrition and weight control, smoking cessation and end-of-life planning. Emotional responses to dyspnea were managed by behavioural therapy including specific techniques such as cognitive behavioural therapy, counselling, motivational approach, cardiac coherence, mindfulness meditation and hypnosis, depending on individual’s preferences or PR member training. Motivational communication was designed to implement favourable health behaviour changes, which was frequently re-evaluating and readjusting. PR team members received training in the principles of behaviour change and motivational communication skills.

A cycle ergometer (Domyos essential 2, Decathlon, Villeneuve-d’Ascq, France) and/or a stepper (Go Sport, Grenoble, France) were available at home to perform physical exercise during the 8-week training component of the programme. Cardiorespiratory training was initially performed by 10 min bouts (or sometimes shorter if the participant was unable to exercise for 10 min), at least 5 days per week, trying to achieve 30–45 min of exercise, in one or several sessions, per day. Exercise intensity was adjusted to maintain a Borg dyspnea score between 3 and 4 on the Borg 0–10 scale. Physical training was completed with upper and lower limb muscle strengthening exercises using dumbbells, elastic and/or body weight on the same daily basis than cardiorespiratory training. Participants requiring long-term oxygen therapy performed the exercise training programme with oxygen to maintain a SpO2 >90%. They were also encouraged to increase the amount of time spent in daily life physical activities such as gardening, housekeeping, groceries. All along the intervention, PR team members emphasised the need for long-term continuation of endurance training and physical activities integrated into daily living chosen by the patient according to his/her preferences and the local possibilities.

Data collection

Lung function, medication and comorbidity data were collected from the patient medical record provided by their pulmonologist. The burden of comorbidity was assessed using the Charlson Index. Participants were evaluated at home, at the beginning (M0), at the end of 8-week PR programme (M2, short term), and at 8 months (M8, medium term) and 14 months (M14, long term) after M0, to conclude a full year of follow-up post-PR.

Dyspnea was assessed with the French validated version of the D-12 questionnaire. Each 12-item (seven for the physical and five for the affective components) score ranges from ‘none’ (score 0) to ‘severe’ (score 3) with a total score ranging from 0 to 36 (lower is better), a physical score ranging from 0 to 21 and an affective score ranging from 0 to 15. A minimal important difference (MID) of 4 to 6 points in the D-12 total score was recently reported after PR in people with severe COPD. The mMRC breathlessness scale was also used to evaluate the physical dimension of dyspnea. Health-related quality of life was evaluated with the Visual Simplified Respiratory Questionnaire (VSRQ) (eight questions on a scale from 0 to 10 with a total score ranging from 0 to 80; higher is better). The Hospital Anxiety and Depression scale (14 items: seven each for anxiety and depression with minimum and maximum subscores of 0 and 21; lower is better) and the Fatigue Assessment Scale (FAS) (10 items: five reflecting physical fatigue and five reflecting mental fatigue with a test score ranging from 10 to 50; lower is better) were assessed. An anxiety or depressive symptoms score >11 indicates a probable clinical diagnosis of anxiety or depression, and an FAS score ≥22 suggests abnormal fatigue.

The 6 min stepper test (6MST) was used to evaluate exercise tolerance at home. Standardised instructions were given, advising the participant to make the maximum number of steps (defined as a single complete movement of raising one foot and putting it down) possible over a 6 min period.

Statistical analyses

Statistical analyses were performed using SAS V.9.4 (SAS Institute) and statistical significance threshold was considered at 0.05. Continuous variables are expressed as mean±SD or median ±SE (IQR for non-normal distribution). Normality of distribution was assessed using histograms and Shapiro-Wilk tests. Non-normally distributed data were log-transformed before analysis. Pearson correlation were used to report the possible correlations between the physical and affective components of dyspnea.

PR effectiveness

Linear mixed models with a random intercept to account the correlation between samples obtained within the same individuals, were used to evaluate the changes in study outcomes over time (M2, M8 and M14). Normality of the model residuals was checked for each outcome using graphs of conditional residuals. The missing data (participants who dropped-out at M2, M8 and M14) were imputed using a regression-switching approach. Estimates obtained in the different imputed data sets were combined using the Rubin’s rules.

Correlates of the changes in D-12 subscores and total score

Possible associations between baseline characteristics and changes in D-12 scores (physical, affective and total score) from baseline to M2 were evaluated using parametric analyses of covariance (ANCOVA), adjusted for baseline value. A significance level of 0.20 in parametric analyses was used to keep the most important explanatory variables in the final model. These variables were then implemented into a backward stepwise multivariable ANCOVA model.

Characteristics of participants reaching the D-12 total score MID after PR

An additional analysis (online supplemental data) was conducted to determined factors associated with a
diminution <4 points in D-12 total score (MID reported by Beaumont et al\(^{26}\)) after PR (M2). Participants who had reach the D-12 total score MID were defined as responders to PR. Baseline characteristics associated with responders in D-12 total score were analysed with univariate analysis using \(\chi^2 \) test for categorical variables, Student’s t-test for Gaussian continuous variable and Mann-Whitney U test for non-Gaussian continuous variables. To assess the independent predictors of responders, baseline characteristics associated with a p<0.20 in univariate analyses were implemented into a backward-stepwise multivariable logistic regression model using a removal criterion of p>0.05. Before developing the multivariable logistic model, we examined the log-linearity assumption for continuous characteristics using restricted cubic spline functions.

RESULTS
A total of 225 people with COPD were enrolled into the home-based programme, among them 152 (68%) participants concluded a full year of follow-up (figure 1).

Compared with the participants who concluded a full year of follow-up, participants who dropped out the study were characterised at baseline by a lower FEV\(_1\), a lower affective dyspnoea score and a higher proportion of individuals requiring long term oxygen therapy. The majority of the enrolled participants were males, overweight, aged 65±11 years and had severe COPD with a mean FEV\(_1\) of 35%±15% of predicted value (table 1). Over two-thirds of the participants used long-term oxygen therapy and 40% were on non-invasive ventilation (table 1). Among the 225 included participants, 98 (44%) and 70 (31%) patients reported an anxiety and depression subscores>11 points, respectively, and 169 (75%) had an FAS score >22 points. Strong correlations were found between the physical and affective components of dyspnoea (0.70<r < 0.80, p<0.01)

PR effectiveness
Both physical and affective components of dyspnoea and the other outcome measures were all improved at M2, M8 and M14 compared with baseline (p<0.05) (table 2). There was no significant difference between M2, M8 and M14 in any of the outcome measures. At M2, M8 and M14, 98 (49%), 88 (51%) and 81 (33%) participants, respectively, had a diminution of more than four points.
Characteristics of participants reaching the D-12 total score MID after PR

The majority of the participants who reached the D-12 total score MID after PR were females, with higher BMI, FEV1, FAS score and a lower VSRQ score. Changes in the D-12 total score were associated with a decrease in physical baseline. BMI, anxiety symptom and exercise tolerance after PR, while BMI, depression symptom and exercise tolerance were the best predictors of the change in the D-12 total score (table 4).

Table 2 Assessments at baseline (M0) and changes in the outcomes at short term (M2), medium term (M8) and long term (M14) after PR

<table>
<thead>
<tr>
<th>Assessments</th>
<th>M0</th>
<th>M2</th>
<th>ΔM2 - baseline (95% CI)</th>
<th>M8</th>
<th>ΔM8 - baseline (95% CI)</th>
<th>M14</th>
<th>ΔM14 - baseline (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-12 questionnaire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical (0–21)</td>
<td>13.7±0.4</td>
<td>10.5±0.4</td>
<td>−3.1 (−4.0 to −2.3)</td>
<td>9.8±0.4</td>
<td>−3.9 (−4.9 to −3.0)</td>
<td>9.8±0.5</td>
<td>−3.8 (−4.8 to −2.9)</td>
</tr>
<tr>
<td>Affective (0–15)</td>
<td>8.2±0.3</td>
<td>6.1±0.3</td>
<td>−2.2 (−2.8 to −1.6)</td>
<td>6.0±0.4</td>
<td>−2.3 (−2.9 to −1.6)</td>
<td>5.6±0.4</td>
<td>−2.7 (−3.4 to −2.0)</td>
</tr>
<tr>
<td>Total score (0–36)</td>
<td>21.9±0.7</td>
<td>16.6±0.7</td>
<td>−5.3 (−6.7 to 4.0)</td>
<td>15.7±0.8</td>
<td>−6.2 (−7.7 to −4.7)</td>
<td>15.2±0.8</td>
<td>−6.7 (−8.3 to −5.1)</td>
</tr>
<tr>
<td>mMRC (0–4)</td>
<td>3.2±0.1</td>
<td>3.0±0.1</td>
<td>−0.2 (−0.4 to −0.1)</td>
<td>3.0±0.1</td>
<td>−0.3 (−0.4 to −0.1)</td>
<td>2.9±0.1</td>
<td>−0.5 (−0.5 to −0.2)</td>
</tr>
<tr>
<td>VSRQ score (0–80)</td>
<td>28.9±1.4</td>
<td>39.8±1.4</td>
<td>10.1 (1.7 to 12.5)</td>
<td>38.2±1.5</td>
<td>9.3 (6.7 to 11.9)</td>
<td>36.4±1.5</td>
<td>7.5 (4.7 to 10.2)</td>
</tr>
<tr>
<td>Anxiety symptom</td>
<td>9.9±0.3</td>
<td>8.2±0.3</td>
<td>−1.7 (−2.2 to −1.1)</td>
<td>8.0±0.3</td>
<td>−1.9 (−2.4 to −1.3)</td>
<td>7.7±0.3</td>
<td>−2.1 (−2.7 to −1.5)</td>
</tr>
<tr>
<td>Depressive symptom</td>
<td>8.3±0.3</td>
<td>6.7±0.3</td>
<td>−1.6 (−2.1 to −1.1)</td>
<td>6.1±0.3</td>
<td>−2.3 (−2.8 to −1.7)</td>
<td>6.2±0.3</td>
<td>−2.1 (−2.7 to −1.6)</td>
</tr>
<tr>
<td>FAS score (10–50)</td>
<td>28 (23 to 25)</td>
<td>28 (23 to 25)</td>
<td>−0.2 (−0.3 to −0.1)*</td>
<td>24 (19 to 29)</td>
<td>−0.2 (−0.3 to −0.1)*</td>
<td>24 (18 to 30)</td>
<td>−0.1 (−0.2 to −0.0)*</td>
</tr>
<tr>
<td>6MST, strokes</td>
<td>299±14</td>
<td>370±13</td>
<td>73.1 (53.7 to 92.5)</td>
<td>337±14</td>
<td>40.1 (18.1 to 62.0)</td>
<td>343±15</td>
<td>46.0 (21.7 to 70.3)</td>
</tr>
</tbody>
</table>

*Estimations after a log +1 transformation (FAS score was non-linear).

FAS, Fatigue Assessment Scale; mMRC, modified Medical Research Council dyspnoea scale; 6MST, 6 min stepper test; VSRQ, Visual Simplified Respiratory Questionnaire.

DISCUSSION

This real-life study conducted in a large sample size of patients with COPD, many of whom had chronic respiratory failure and required long-term oxygen therapy and/or non-invasive ventilation, showed that an 8 weeks of individualised and home-based PR programme resulted in short-term, medium-term and long-term improvements in both physical and affective components of dyspnoea assessed by the D-12 questionnaire. To the same extent, health status, anxiety and depressive symptoms, fatigue and exercise tolerance were also improved. As important result of this study is that, despite their strong correlation, improvements in physical and affective domains of dyspnoea after PR were not drive by the same baseline characteristics. A higher BMI was the only determinant of a reduction in physical domain of dyspnoea after PR, while the change in the affective dimension of dyspnoea after PR was associated with FEV1, anxiety symptoms and exercise tolerance.

Correlates of the changes in D-12 subscores and total score

Table 3 reports correlation parameters between baseline characteristics and changes in the D-12 questionnaire scores from baseline to each of the follow-up assessments (online supplemental figures S1).

Characteristics of participants reaching the D-12 total score MID after PR

The majority of the participants who reached the D-12 total score MID after PR were females, with higher BMI, FEV1, FAS score and a lower VSRQ score, while BMI, depression symptom and exercise tolerance after PR, while BMI, depression symptom and exercise tolerance were the best predictors of the change in the D-12 total score (table 4).
Although these results should be taken cautiously since the variables included in the ANCOVA analysis had only a poor impact on the changes in D-12 subscores and total score, they are no less informative about the factors that influence the physical and affective domains of dyspnoea after PR, and support the importance of a multidimensional evaluation of dyspnoea.

The D-12 dyspnoea questionnaire is a recent multidimensional questionnaire validated in several chronic respiratory disease including COPD. With a mean D-12 total score of 21.9, we reported higher score compared with previous studies in people with moderate and severe COPD (18.0 and 14.5, respectively). The presence of chronic respiratory failure in more than 80% of this study population and, therefore, the highly sedentary lifestyle associated with, could explained the higher D-12 total score.

Effectiveness of PR on dyspnoea in stable people with COPD was recently documented in a systematic review. Higashimoto et al concluded that 4–12 weeks of PR significantly improved dyspnoea whether it was measured with mMRC, Borg scale, transitional dyspnoea index or chronic respiratory questionnaire. These short-term results were similar irrespective of whether PR was delivered on an outpatient basis or at home, a result supported by previous studies. Nevertheless, the long-term effectiveness and the changes in the affective dimension of dyspnoea were not reported in these meta-analyses. This study first showed that 1 weekly individualised home PR session, combining physical exercises, education and self-management interventions, during 8-week induced short-term and long-term benefits on both physical and affective dimensions of dyspnoea, assessed by the D-12 questionnaire. Moreover, mean changes in D-12 total score of −5.3 to −6.2 and −6.7 points at M2, M8 and M14, respectively, suggested that beyond being statistically significant, the positive changes were also clinically important for the participants and persistent over time. Ekström et al recently reported a minimal clinically important difference of 1.9 (1.3–2.4) and 1.1 (0.7–1.5) for the physical and the affective components of D-12 questionnaire, respectively. However, these results were obtained without any intervention between the two measurements, limiting the comparison with the present results. The MIDs of the physical and affective components of dyspnoea after

Table 3 Association between baseline characteristics and changes in D-12 questionnaire scores at short term (M2)

<table>
<thead>
<tr>
<th>Baseline</th>
<th>D-12 Physical ∆M2 - baseline</th>
<th>D-12 Affective ∆M2 - baseline</th>
<th>D-12 Total ∆M2 - baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimates±SE</td>
<td>P value</td>
<td>Estimates±SE</td>
</tr>
<tr>
<td>Age, 1 year increase</td>
<td>0.01±0.03</td>
<td>0.67</td>
<td>0.03±0.02</td>
</tr>
<tr>
<td>Sex, female versus male</td>
<td>0.83±0.74</td>
<td>0.26</td>
<td>−0.07±0.56</td>
</tr>
<tr>
<td>BMI, 1 kg/m² increase</td>
<td>−0.12±0.04</td>
<td><0.01</td>
<td>−0.07±0.03</td>
</tr>
<tr>
<td>FEV₁, 1% of predicted value increase</td>
<td>−0.07±0.02</td>
<td><0.01</td>
<td>−0.06±0.02</td>
</tr>
<tr>
<td>Charlson Index, 1-point increase</td>
<td>−0.03±0.12</td>
<td>0.78</td>
<td>0.11±0.10</td>
</tr>
<tr>
<td>VSRQ, 1-point increase</td>
<td>−0.04±0.03</td>
<td>0.26</td>
<td>−0.06±0.03</td>
</tr>
<tr>
<td>Anxiety symptom, score >11</td>
<td>0.74±0.76</td>
<td>0.33</td>
<td>2.07±0.63</td>
</tr>
<tr>
<td>Depression symptom, score >11</td>
<td>0.04±0.84</td>
<td>0.97</td>
<td>0.96±0.66</td>
</tr>
<tr>
<td>FAS, 1 log in total score increase</td>
<td>−1.15±1.13</td>
<td>0.31</td>
<td>1.39±0.85</td>
</tr>
<tr>
<td>6MST, 1 stroke increase</td>
<td>−0.003±0.003</td>
<td>0.31</td>
<td>−0.005±0.002</td>
</tr>
</tbody>
</table>

Results of the parametric analysis of covariance, adjusted for baseline value. mMRC scales were not included in the analysis due to the collinearity with D-12 questionnaire.

BMI, body mass index; D-12, Dyspnoea-12; FAS, Fatigue Assessment Scale; FEV₁, forced expiratory volume in 1 s; mMRC, modified Medical Research Council; 6MST, 6 min stepper test; VSRQ, Visual Simplified Respiration Questionnaire.

Table 4 Multifactorial determinants of changes in D-12 questionnaire scores

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Estimates±SE</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>∆M2-baseline D-12 physical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI, 1 kg/m² increase</td>
<td>−0.12±0.04</td>
<td>0.003</td>
</tr>
<tr>
<td>∆M2-baseline D-12 affective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV₁, 1% of predicted value increase</td>
<td>−0.06±0.02</td>
<td>0.001</td>
</tr>
<tr>
<td>Anxiety symptom, score >11</td>
<td>1.83±0.61</td>
<td>0.003</td>
</tr>
<tr>
<td>6MST, 1 stroke increase</td>
<td>−0.005±0.002</td>
<td>0.007</td>
</tr>
<tr>
<td>∆M2-baseline D-12 total score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV₁, 1% of predicted value increase</td>
<td>−0.06±0.02</td>
<td><0.001</td>
</tr>
<tr>
<td>6MST, 1 stroke increase</td>
<td>−0.004±0.002</td>
<td>0.048</td>
</tr>
</tbody>
</table>

Results from the backward stepwise multivariable ANCOVA. A significance level of 0.20 in parametric analysis (table 3) was used to keep the most important explanatory relationship variables in the final model. Multiple imputations were used and data were adjusted for baseline value.

ANCOVA, analysis of covariance; BMI, body mass index; D-12, Dyspnoea-12; FEV₁, forced expiratory volume in 1 s; 6MST, 6 min stepper test.
PR still need to be determined. Moreover, although the changes in mMRC scale were significant across time, its responsiveness to PR programme was poor and not clinically relevant. The poor mMRC sensitivity to PR has already been mentioned, and highlight the importance of using multidimensional tools, such as the D-12 questionnaire to assess dyspnoea in PR settings. Finally, beyond dyspnoea, health-related quality of life, anxiety and depressive symptoms and exercise tolerance were also all improved at short term, medium term and long term after the home-based PR programme.

Baseline BMI, airway obstruction, health-related quality of life, anxiety symptoms, fatigue and exercise tolerance, had an independent effect on the short improvement in D-12 total score. With an exception for the anxiety symptoms and the exercise tolerance, these results were confirmed by the analysis of participants’ characteristics who responded to PR (online supplemental data). By dissociating the two dyspnoea components, we noticed that health related quality of life and anxiety and depressive symptoms seemed to have a greater impact on the change in the affective domain of dyspnoea compared with the physical one. Although the relationship between anxiety and depressive symptoms and dyspnoea in people with COPD is known, the novelty of this study was to demonstrate that baseline anxiety symptom negatively affected the evolution of affective dyspnoea at the end of PR. In other words, individuals with a baseline anxiety symptom score >11 are more likely to show a smaller improvement in the affective domain of dyspnoea after PR.

Interestingly, a higher baseline BMI was a determinant of reached D-12 total score MID and reduced physical dyspnoea after PR. Since a low BMI is often associated with severe stages of the disease such as dyspnoeic emphysematous patient, the high prevalence of individuals with long term oxygen therapy and consequently the high risk of low lean body mass could explain this result. Another explanation could be that individuals with a higher BMI at baseline (and potentially a higher muscle mass) might have trained at a higher absolute training stimulus compared with individuals with a lower BMI. However, in the absence of muscle mass measurement and accurate data regarding exercise training amount, we can only speculate about this hypothesis. Nevertheless, results from the multivariate ANCOVA analysis and from the logistic regression model should be taken cautiously. Indeed, the variables included in the models have only a poor impact on the changes in D-12 questionnaire total score and subscores. For example, an increase of 40 strokes in the baseline 6MST performance corresponding to the minimal clinically important difference would be associated with an improvement of 0.16 points in the total score of D-12 questionnaire, questioning the clinical relevance of these results.

Clinical implication
The optimal PR design to reduce the affective dimension of dyspnoea remains to be determined in COPD. However, as previously mentioned, in addition to pharmacological treatments that help to manage the anxiety-distress associated to dyspnoea, interventional strategies that appease the mind should be integrate into PR programme, especially for the persistent dyspnoeic patient. Recently, original interventions coupling traditional PR and behavioural therapies were designed to improve dyspnoea, and anxiety and depressive symptoms. Cognitive–behavioural therapy combined with traditional PR seems to further extend the benefits on dyspnoea, anxiety and depressive symptoms and exercise capacity in people with COPD. In addition to education and physical training, the present home-based programme offered cognitive behavioural therapy, cardiac coherence, mindfulness meditation and/or hypnosis, depending on individual’s preferences. These latest behavioural therapy techniques, although less popular, have showed encouraging results to reduce psychological distress and dyspnoea in people with COPD. The holistic approach, centred on the individual (and their caregiver) in their environment, according to their needs and preferences, may have contributed to the positive short- and long-term results observed in this study, warranting replicating this finding using a randomised controlled trial.

Methodological considerations
The monocentric, non-randomised nature of this study and the absence of a control group may limit the scope of the present results that should be confirmed by robustly designed randomised and controlled studies. However, data were collected systematically and consistently as an integral part of the home-based PR including a large number of participants in a real-life setting. Moreover, the intervention was conducted according to a well-defined protocol and always by the same trained team. By improving external validity and establishment in usual care, real-life studies are useful to complement the results of traditional randomised controlled trial. Reporting the number of participants using anxiolytic, benzdiazepine and/or opioid for treating anxiety and depressive symptoms could have strengthen our results, as well as the number participants who exacerbated during the 8-week programme and/or during the 1-year follow-up. However, this information was not systematically report in the patient medical record. Finally, since patients’ recording of their unsupervised training sessions in a physical activity diary was optional, the adherence to physical training session cannot be report. Tracking unsupervised physical training, and especially during a long-term follow-up, is a challenge for home-based PR that has yet to be addressed. However, the present results might suggest that recording adherence to each component of PR might not be necessary for maintaining long-term...
benefits after PR. A robustly designed randomised study is needed to confirm this hypothesis.

CONCLUSION

Both physical and affective components of dyspnoea were improved, at short-term, medium term and long term, by 8 weeks of individualised home-based PR in people with COPD. The improvement in physical and affective domains of dyspnoea after the intervention were not driven by the same baseline characteristics, highlighting the importance of evaluating and implementing specific strategies to improve both domains of dyspnoea. The present results should be confirmed by robustly designed randomised and controlled studies.

Author affiliations

1FormAction Santé, Pérennées, France
2Univ. Lille, Univ. Artis, Univ. Littoral Côte d'Opale, ULR 7369-Urepss, Lille, France
3Institut universitaire de cardiologie et de pneumologie de Quebec, Quebec, Canada
4Department of Biostatistics, CHU Lille, Univ. Lille, EA 2694 - Santé Publique: Épidémiologie et Qualité des Soins, Lille, France
5CHU Lille, Service de Pneumologie et Immuno-Allergologie, Centre de Référence Constitutif des Maladies Pulmonaires Rares, Lille, UK
6Inserm, CNRS, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France

Acknowledgements We thank the members of the rehabilitation team: Sophie Duriez, Matthieu Grosbois, Marjorie Lambinet, Valentine Opsomer, Gaelle Tywoniuk, Florence Urbain, Sandrine Vanexem and Virginie Wauquier.

Contributors J-MG: conceptualisation, execution, acquisition of data, writing the original draft, funding acquisition. SG: execution, formal analysis and interpretation, writing the original draft. MK: formal analysis and interpretation, writing-/review and editing. JH, OLR, DS, FM and CC: writing-review and editing. All authors gave final approval of the version to be published. J-MG is the guarantor of the manuscript.

Funding The delivery of home-based PR was financially supported by Adair, Aenis Santé, Bastide, France Oxygène, Homeperf, LVL, Medopale, NorOx, Santélys, SYS Oxygène, Sysmed, VentilHome, VitalAire, and ARS Hauts-de-France.

Disclaimer The funders played no role in the design, conduct or reporting of this study.

Competing interests SG, MK, JH and DS have no conflict of interest to disclose. FM reports grants from AstraZeneca and GlaxoSmithKline, Boehringer Ingelheim, GSK, Sanofi, and Novartis during the conduct of this study, and personal fees from GlaxoSmithKline, Grifols, and Novartis outside the submitted work. J-MG reports non-financial support unrelated to the submitted work from AstraZeneca, Boehringer Ingelheim, Chiesi, CSL Behring, GlaxoSmithKlein, Novartis, and Roche. CC reports grants from AstraZeneca, Santelys, personal fees from ALK-Abello, AstraZeneca, Boehringer Ingelheim, Chiesi, GlaxoSmithKlein, Novartis, Sanofi-Regeneron, TEVA and congress supports from ALK-Abello, AstraZeneca, Boehringer Ingelheim, GlaxoSmithKlein, Novartis, Pierre Fabre, Pfizer, Roche, TEVA. OLR reports personal fees and/or non-financial support unrelated to the submitted work from AstraZeneca, Boehringer Ingelheim, Chiesi, Lilly, Novartis, GlaxoSmithKline, MundPharma, Pfizer, Teva, Santelys, Vertex and Vitalaure.

Patient consent for publication Not applicable.

Ethics approval Human Research Ethics approval was provided by the observational research protocol evaluation committee of the French Language Society of Pulmonology (CEPPO 2017-007).

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available on reasonable request.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

REFERENCES

7 Gift AG. Validation of a vertical visual analogue scale as a measure of clinical dyspnea. Rehabil Nurs 1989;14:323-5.
22 Gephine S, Saey D, Grosbois J-M, et al. Home-Based pulmonary rehabilitation is effective in frail COPD patients with chronic

37 Ekström M, Bornefalk H, Sköld CM, et al. Minimal clinically important differences for Dyspnea-12 and MDP scores are similar at 2 weeks and 6 months: follow-up of a longitudinal clinical study. Eur Respir J 2021;57:2002823.

40 Similowski T. Treat the lungs, fool the brain and appease the mind: towards holistic care of patients who suffer from chronic respiratory diseases. Eur Respir J 2018;51:1800316.

Supplementary data

Physical and affective components of dyspnœa are improved by pulmonary rehabilitation in COPD.

Table S1. Baseline characteristics of participants according to D-12 total score improvement (MID) at short term (M2).

<table>
<thead>
<tr>
<th>Baseline characteristics</th>
<th>Δ M2 - baseline</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>not reach MID</td>
<td>reach MID</td>
</tr>
<tr>
<td>Age</td>
<td>65.0 ± 11.4</td>
<td>65.1 ± 11.1</td>
</tr>
<tr>
<td>Sex, female</td>
<td>29 (30.9)</td>
<td>53 (40.5)</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>25.7 ± 7.2</td>
<td>28.6 ± 9.0</td>
</tr>
<tr>
<td>FEV₁, %, median (IQR)</td>
<td>29.5 (22.0 to 42.0)</td>
<td>33.0 (25.0 to 44.0)</td>
</tr>
<tr>
<td>Charlson Index, median (IQR)</td>
<td>2 (1 to 6)</td>
<td>3 (1 to 4)</td>
</tr>
<tr>
<td>VSRQ</td>
<td>31.3 ± 15.3</td>
<td>26.8 ± 15.8</td>
</tr>
<tr>
<td>Anxiety symptom, HA>11</td>
<td>32 (34.0)</td>
<td>54 (41.5)</td>
</tr>
<tr>
<td>Depression symptom, HD>11</td>
<td>19 (20.2)</td>
<td>35 (26.9)</td>
</tr>
<tr>
<td>FAS, median (IQR)</td>
<td>26 (21.5 to 33)</td>
<td>29 (24 to 36)</td>
</tr>
<tr>
<td>6MST, stroke, median (IQR)</td>
<td>316 (186 to 386)</td>
<td>258 (188 to 376)</td>
</tr>
</tbody>
</table>

The minimal important difference (MID) of -4 points has been chosen according to Beaumont et al\(^{25}\).

The majority of the participants who reached the D-12 total score MID after PR were females, with higher BMI, FEV₁ and FAS score and a lower VSRQ score, compared to the participants who did not reach the MID after PR (p<0.20).

Values are expressed as mean ± SD of values (percentage) unless otherwise indicated. P-values were obtained using Chi-square test for categorical variables, Student T test for Gaussian continuous variable and Mann-Whitney U test for non gaussian continuous variables.

BMI, body mass index; FEV₁, Forced expiratory volume in 1 second; VSRQ, Visual Simplified Respiratory Questionnaire; FAS, Fatigue Assessment Scale; 6MST, 6-minute stepper test.
Table S2. Multivariate model of independent predictors of responders in D-12 total score at M2

<table>
<thead>
<tr>
<th>Baseline</th>
<th>OR (95%CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>1.44 (1.20 to 1.72)</td>
<td><0.001</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>1.04 (1.03 to 1.06)</td>
<td><0.001</td>
</tr>
<tr>
<td>FAS</td>
<td>1.35 (1.19 to 1.53)</td>
<td><0.001</td>
</tr>
<tr>
<td>VSRQ</td>
<td>0.90 (0.84 to 0.97)</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Odds ratios (ORs) were calculated using a backward-stepwise multivariable logistic regression model after multiple imputation. A significance level of 0.20 in parametric analysis (Table S1, supplementary data) was used to keep the most important explanatory relationship variables in the final model.

BMI, body mass index; FEV1, Forced expiratory volume in 1 second; VSRQ, Visual Simplified Respiratory Questionnaire; FAS, Fatigue Assessment Scale, CI, confidence intervals.
Figure S1. Dyspnœa-12 questionnaire physical subscore (A), affective subscore (B), and total score (C) at the beginning of the programme (M0) and at the short- (M2), medium- (M8) and long-term (M14) after the pulmonary rehabilitation programme.

A M0 higher than M2, M8 and M14 (p<0.01)

Dotted lines on panel (C) indicate the expected minimal important difference of -4 to -6 points in the D-12 questionnaire total score.²³