eLetters

4 e-Letters

published between 2021 and 2024

  • Solutions to tobacco industry influence on science need to address the whole system of science

    Van den Bosch et al. (2024) carefully outline their reflections on Philip Morris International’s (PMI) 2021 takeover of Vectura Group. We thank the authors for opening the conversation on this important issue and sympathise about the difficult position they were left in when Vectura’s board agreed to PMI’s acquisition. We would like to offer some additional food for thought on this topic stemming from our own work.

    The Science for Profit Model (Legg et al., 2021a) demonstrates how corporations across diverse industries seek to influence all aspects of science – what is researched, how research is conducted, disseminated and interpreted, and whether and how it is used in policy and practice. Corporate sectors including tobacco, pharmaceuticals, alcohol, fossil fuels and gambling do this in remarkably similar ways, skewing whole evidence bases in industry’s favour – weakening regulation, preventing litigation and maximising product sales.

    Certain aspects of this influence are particularly pertinent here. Firstly, despite Vectura assuring the researchers their work would remain independent, the resulting science can still further PMI’s objectives. Research that deflects attention from corporate harms or promotes interventions that minimise damage to product sales is not necessarily “contaminated” but nonetheless benefits the industry funder by driving research agendas away from topics which would impact industry negatively (Legg et al., 2021a, Fabbri et al., 20...

    Show More
  • Response to Dr Wilkinson and Professor Woodcock

    We are grateful to Dr Wilkinson and Professor Woodcock for their comments on our paper.

    A key topic raised is related to the assumptions on the timelines to transition to low-Global Warming Potential (GWP) propellants. As of today, several Companies have committed to substantial investments in metered dose inhalers (MDIs) with novel propellants (1-4), indicating developments are progressing fast to target market introduction over the next few years, with 2025 as suggested initial date, and roll-out across portfolios and geographies. Previous transition from CFC to HFC-containing MDIs represents a precedent experience that can be leveraged to ensure a faster process, also dictated by pressure imposed by evolving regulations of HFC use. The new lower global warming potential propellant used for the inhaler transition in this analysis, HFA-152a, has been under development by Koura for an extended period for use in MDIs for the treatment of respiratory disorders such as asthma and COPD (5). In 2020, Koura reported that the US FDA had approved clinical trials with HFA-152a (6) and that the medical-grade propellant has been subject to an extensive suite of inhalation safety testing (including a chronic two-year pre-clinical study). It is understood that this extensive program will be used to support the future commercial use of medical-grade HFA-152a, with the essential Drug Master File expected to be finalized in 2022 (7). We agree that, in addition, the necessary clinic...

    Show More
  • Missed opportunities to improve disease control and unrealistic expectations about novel propellants.

    We are strongly supportive of efforts to reduce the carbon footprint of inhalers. We believe this should be achieved by providing easily understood information to patients and health care workers to be able to make informed decisions about their inhaled treatments. Near term changes prioritising controller medication with the very large range of available Dry powder inhalers (DPIs) could reduce the carbon footprint by 90%, bringing the UK in line with the rest of Europe.

    The paper is essentially written by Chiesi pharmaceuticals. We are concerned about potential bias in the paper arising from this conflict of interest. Chiesi are to be applauded for having committed substantial R&D to the development of metered dose inhalers (MDIs) containing a novel lower GWP propellant HFC-152a to replace high GWP 134a. They are one of only two companies who have announced a transition using HFC-152a for their large range of MDIs.(1,2) However, the paper contains a number of inaccuracies, and is over-optimistic on the timing and pace of transition.

    The timelines for achieving a transition to HFC 152a pMDIs are unrealistic; the transition to HFA152a is likely to take far longer than described in the paper. So far, no safety or efficacy data is available for any inhaler containing HFC-152. No detail on requirements for HFC 152a inhalers has been published by the regulatory agencies, although it seems almost certain that long-term human safety data will be required.(3)...

    Show More
  • High LDL-cholesterol protects against infections

    What very few know is that more than a dozen research groups have demonstrated that low density-lipoprotein (LDL) participates in the immune system by adhering to and inactivating almost all kinds of microorganisms and their toxic products.1 For instance, compared with normal rats, hypocholesterolemic rats injected with bacteria have a markedly increased mortality which can be ameliorated by injecting purified human LDL. When covered with LDL, the bacteria accumulate and are phagocytosed by macrophages, which are subsequently converted to foam cells. This fact may explain the finding by Yusufuddin et al.2 that mortality was lower among the patients with pneumonia if their LDL-cholesterol was elevated. The same phenomenon was found in a follow-up study of about 30,000 community-dwelling adults by Guirg et al.: LDL-C was inversely associated with the risk of suffering from one or more sepsis events (Table 1).3

    LDL-C quartiles Q1 Q2 Q3 Q4
    Number of participants 6984 7088 6915 6896
    Sepsis events (%) 451 (6.5) 399 (5.6) 304 (4.4) 261 (3.8)
    Table 1. The LDL-C quartiles of those who suffered from one or more sepsis events
    according to the study by Guirgis et al.3

    That high LDL-C may be protective is also evident from a meta-analysis of 19 studies where the authors had followed more than 68,000 elderly people for several years.4 What they found was that those with the highest LDL-cholesterol lived the longest; non...

    Show More