Appendix 1

Basic equations/principles

(a) $pH = 6.1 + log (HCO_3^-/ (0.03 \text{ x pCO}_2))$

(b) $\log A/B = \log A - \log B$; $\log A \ge B = \log A + \log B$

(c) For change in pH driven by acute hypercapnoea, proportionate change in pCO₂ >> than in HCO₃- $^{[23]}$

Change in pH

Given (a)

Change in pH = $6.1 + \log ([HCO_3^- initial] \times (proportion new HCO_3^- is of [HCO_3^- initial]) / (0.03 \times [pCO_2 initial]) \times (proportion new pCO_2 is of [pCO_2 initial]) - (6.1 + log ([HCO_3^- initial]/(0.03 \times [pCO_2 initial]))$

Given (b)

Change in pH = log (proportion new HCO₃⁻ is of [HCO₃ initial]) – log (proportion new pCO₂ is of [pCO₂ initial])

Given (c)

Change in pH driven by acute hypercapnoea $\approx -\log$ (proportion post pCO₂ is of [pCO₂ initial])