Skip to main content

Advertisement

Log in

Nasopharyngeal carriage and macrolide resistance in Indigenous children with bronchiectasis randomized to long-term azithromycin or placebo

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Although long-term azithromycin decreases exacerbation frequency in bronchiectasis, increased macrolide resistance is concerning. We investigated macrolide resistance determinants in a secondary analysis of a multicenter randomized controlled trial. Indigenous Australian children living in remote regions and urban New Zealand Māori and Pacific Islander children with bronchiectasis were randomized to weekly azithromycin (30 mg/kg) or placebo for up to 24 months and followed post-intervention for up to 12 months. Nurses administered and recorded medications given and collected nasopharyngeal swabs 3–6 monthly for culture and antimicrobial susceptibility testing. Nasopharyngeal carriage of Haemophilus influenzae and Moraxella catarrhalis was significantly lower in azithromycin compared to placebo groups, while macrolide-resistant Streptococcus pneumoniae and Staphylococcus aureus carriage was significantly higher. Australian children, compared to New Zealand children, had higher carriage overall, significantly higher carriage of macrolide-resistant bacteria at baseline (16/38 versus 2/40 children) and during the intervention (69/152 versus 22/239 swabs), and lower mean adherence to study medication (63 % versus 92 %). Adherence ≥70 % (versus <70 %) in the Australian azithromycin group was associated with lower carriage of any pathogen [odds ratio (OR) 0.19, 95 % confidence interval (CI) 0.07–0.53] and fewer macrolide-resistant pathogens (OR 0.34, 95 % CI 0.14–0.81). Post-intervention (median 6 months), macrolide resistance in S. pneumoniae declined significantly in the azithromycin group, from 79 % (11/14) to 7 % (1/14) of positive swabs, but S. aureus strains remained 100 % macrolide resistant. Azithromycin treatment, the Australian remote setting, and adherence <70 % were significant independent determinants of macrolide resistance in children with bronchiectasis. Adherence to treatment may limit macrolide resistance by suppressing carriage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Singleton RJ, Valery PC, Morris P, Byrnes CA, Grimwood K, Redding G, Torzillo PJ, McCallum G, Chikoyak L, Mobberly C, Holman RC, Chang AB (2014) Indigenous children from three countries with non-cystic fibrosis chronic suppurative lung disease/bronchiectasis. Pediatr Pulmonol 49(2):189–200

    Article  PubMed  Google Scholar 

  2. Loebinger MR, Wells AU, Hansell DM, Chinyanganya N, Devaraj A, Meister M, Wilson R (2009) Mortality in bronchiectasis: a long-term study assessing the factors influencing survival. Eur Respir J 34(4):843–849

    Article  CAS  PubMed  Google Scholar 

  3. Steinfort DP, Brady S, Weisinger HS, Einsiedel L (2008) Bronchiectasis in Central Australia: a young face to an old disease. Respir Med 102(4):574–578

    Article  PubMed  Google Scholar 

  4. Wong C, Jayaram L, Karalus N, Eaton T, Tong C, Hockey H, Milne D, Fergusson W, Tuffery C, Sexton P, Storey L, Ashton T (2012) Azithromycin for prevention of exacerbations in non-cystic fibrosis bronchiectasis (EMBRACE): a randomised, double-blind, placebo-controlled trial. Lancet 380(9842):660–667

    Article  CAS  PubMed  Google Scholar 

  5. Altenburg J, de Graaff CS, Stienstra Y, Sloos JH, van Haren EH, Koppers RJ, van der Werf TS, Boersma WG (2013) Effect of azithromycin maintenance treatment on infectious exacerbations among patients with non-cystic fibrosis bronchiectasis: the BAT randomized controlled trial. JAMA 309(12):1251–1259

    Article  CAS  PubMed  Google Scholar 

  6. Serisier DJ, Martin ML, McGuckin MA, Lourie R, Chen AC, Brain B, Biga S, Schlebusch S, Dash P, Bowler SD (2013) Effect of long-term, low-dose erythromycin on pulmonary exacerbations among patients with non-cystic fibrosis bronchiectasis: the BLESS randomized controlled trial. JAMA 309(12):1260–1267

    Article  CAS  PubMed  Google Scholar 

  7. Valery PC, Morris PS, Byrnes CA, Grimwood K, Torzillo PJ, Bauert PA, Masters IB, Diaz A, McCallum GB, Mobberley C, Tjhung I, Hare KM, Ware RS, Chang AB (2013) Long-term azithromycin for indigenous children with non-cystic-fibrosis bronchiectasis or chronic suppurative lung disease (Bronchiectasis Intervention Study): a multicentre, double-blind, randomised controlled trial. Lancet Respir Med 1(8):610–620

    Article  CAS  PubMed  Google Scholar 

  8. Mak DB (2006) Better late than never: a national approach to trachoma control. Med J Aust 184(10):487–488

    PubMed  Google Scholar 

  9. Bowden FJ, Fethers K (2008) “Let’s not talk about sex”: reconsidering the public health approach to sexually transmissible infections in remote Indigenous populations in Australia. Med J Aust 188(3):182–184

    PubMed  Google Scholar 

  10. Valery PC, Morris PS, Grimwood K, Torzillo PJ, Byrnes CA, Masters IB, Bauert PA, McCallum GB, Mobberly C, Chang AB (2012) Azithromycin for indigenous children with bronchiectasis: study protocol for a multi-centre randomized controlled trial. BMC Pediatr 12:122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. DiMatteo MR (2004) Variations in patients’ adherence to medical recommendations: a quantitative review of 50 years of research. Med Care 42(3):200–209

    Article  PubMed  Google Scholar 

  12. Modi AC, Lim CS, Yu N, Geller D, Wagner MH, Quittner AL (2006) A multi-method assessment of treatment adherence for children with cystic fibrosis. J Cyst Fibros 5(3):177–185

    Article  PubMed  Google Scholar 

  13. Hare KM, Grimwood K, Leach AJ, Smith-Vaughan H, Torzillo PJ, Morris PS, Chang AB (2010) Respiratory bacterial pathogens in the nasopharynx and lower airways of Australian indigenous children with bronchiectasis. J Pediatr 157(6):1001–1005

    Article  PubMed  Google Scholar 

  14. Bell SM, Pham JN, Newton PJ, Nguyen TT (2014) Antibiotic sensitivity testing by the CDS method. A manual for medical and veterinary laboratories. Seventh edition. Available online at: http://cdstest.net/manual/

  15. Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Tech Bull Regist Med Technol 36(3):49–52

    CAS  PubMed  Google Scholar 

  16. Hare KM, Singleton RJ, Grimwood K, Valery PC, Cheng AC, Morris PS, Leach AJ, Smith-Vaughan HC, Chatfield M, Redding G, Reasonover AL, McCallum GB, Chikoyak L, McDonald MI, Brown N, Torzillo PJ, Chang AB (2013) Longitudinal nasopharyngeal carriage and antibiotic resistance of respiratory bacteria in indigenous Australian and Alaska native children with bronchiectasis. PLoS One 8(8):e70478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Leach AJ, Shelby-James TM, Mayo M, Gratten M, Laming AC, Currie BJ, Mathews JD (1997) A prospective study of the impact of community-based azithromycin treatment of trachoma on carriage and resistance of Streptococcus pneumoniae. Clin Infect Dis 24(3):356–362

    Article  CAS  PubMed  Google Scholar 

  18. Morris PS, Gadil G, McCallum GB, Wilson CA, Smith-Vaughan HC, Torzillo P, Leach AJ (2010) Single-dose azithromycin versus seven days of amoxycillin in the treatment of acute otitis media in Aboriginal children (AATAAC): a double blind, randomised controlled trial. Med J Aust 192(1):24–29

    PubMed  Google Scholar 

  19. Hare KM, Leach AJ, Morris PS, Smith-Vaughan H, Torzillo P, Bauert P, Cheng AC, McDonald MI, Brown N, Chang AB, Grimwood K (2012) Impact of recent antibiotics on nasopharyngeal carriage and lower airway infection in indigenous Australian children with non-cystic fibrosis bronchiectasis. Int J Antimicrob Agents 40(4):365–369

    Article  CAS  PubMed  Google Scholar 

  20. Satzke C, Turner P, Virolainen-Julkunen A, Adrian PV, Antonio M, Hare KM, Henao-Restrepo AM, Leach AJ, Klugman KP, Porter BD, Sá-Leão R, Scott JA, Nohynek H, O’Brien KL; WHO Pneumococcal Carriage Working Group (2013) Standard method for detecting upper respiratory carriage of Streptococcus pneumoniae: updated recommendations from the World Health Organization Pneumococcal Carriage Working Group. Vaccine 32(1):165–179

    Article  PubMed  Google Scholar 

  21. Flanagan PG, Paull A (1998) Carbon dioxide requirements of Streptococcus pneumoniae and Haemophilus influenzae. J Antimicrob Chemother 42(5):669–670

    Article  CAS  PubMed  Google Scholar 

  22. Edwards EA, Asher MI, Byrnes CA (2003) Paediatric bronchiectasis in the twenty-first century: experience of a tertiary children’s hospital in New Zealand. J Paediatr Child Health 39(2):111–117

    Article  CAS  PubMed  Google Scholar 

  23. Munro KA, Reed PW, Joyce H, Perry D, Twiss J, Byrnes CA, Edwards EA (2011) Do New Zealand children with non-cystic fibrosis bronchiectasis show disease progression? Pediatr Pulmonol 46(2):131–138

    Article  PubMed  Google Scholar 

  24. Mills N, Best EJ, Murdoch D, Souter M, Neeff M, Anderson T, Salkeld L, Ahmad Z, Mahadevan M, Barber C, Brown C, Walker C, Walls T (2015) What is behind the ear drum? The microbiology of otitis media and the nasopharyngeal flora in children in the era of pneumococcal vaccination. J Paediatr Child Health 51(3):300–306

    Article  PubMed Central  PubMed  Google Scholar 

  25. Pingault NM, Bowman JM, Lehmann D, Riley TV (2010) Antimicrobial susceptibility of Moraxella catarrhalis isolated from children in Kalgoorlie-Boulder, Western Australia. Pathology 42(3):273–279

    Article  CAS  PubMed  Google Scholar 

  26. Peric M, Bozdogan B, Jacobs MR, Appelbaum PC (2003) Effects of an efflux mechanism and ribosomal mutations on macrolide susceptibility of Haemophilus influenzae clinical isolates. Antimicrob Agents Chemother 47(3):1017–1022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Coles CL, Mabula K, Seidman JC, Levens J, Mkocha H, Munoz B, Mfinanga SG, West S (2013) Mass distribution of azithromycin for trachoma control is associated with increased risk of azithromycin-resistant Streptococcus pneumoniae carriage in young children 6 months after treatment. Clin Infect Dis 56(11):1519–1526

    Article  CAS  PubMed  Google Scholar 

  28. Haug S, Lakew T, Habtemariam G, Alemayehu W, Cevallos V, Zhou Z, House J, Ray K, Porco T, Rutar T, Keenan J, Lietman TM, Gaynor BD (2010) The decline of pneumococcal resistance after cessation of mass antibiotic distributions for trachoma. Clin Infect Dis 51(5):571–574

    Article  PubMed  Google Scholar 

  29. Maher MC, Alemayehu W, Lakew T, Gaynor BD, Haug S, Cevallos V, Keenan JD, Lietman TM, Porco TC (2012) The fitness cost of antibiotic resistance in Streptococcus pneumoniae: insight from the field. PLoS One 7(1):e29407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Hansen CR, Pressler T, Hoiby N, Johansen HK (2009) Long-term, low-dose azithromycin treatment reduces the incidence but increases macrolide resistance in Staphylococcus aureus in Danish CF patients. J Cyst Fibros 8(1):58–62

    Article  CAS  PubMed  Google Scholar 

  31. Phaff SJ, Tiddens HA, Verbrugh HA, Ott A (2006) Macrolide resistance of Staphylococcus aureus and Haemophilus species associated with long-term azithromycin use in cystic fibrosis. J Antimicrob Chemother 57(4):741–746

    Article  CAS  PubMed  Google Scholar 

  32. Prunier AL, Malbruny B, Laurans M, Brouard J, Duhamel JF, Leclercq R (2003) High rate of macrolide resistance in Staphylococcus aureus strains from patients with cystic fibrosis reveals high proportions of hypermutable strains. J Infect Dis 187(11):1709–1716

    Article  CAS  PubMed  Google Scholar 

  33. Tramper-Stranders GA, Wolfs TF, Fleer A, Kimpen JL, van der Ent CK (2007) Maintenance azithromycin treatment in pediatric patients with cystic fibrosis: long-term outcomes related to macrolide resistance and pulmonary function. Pediatr Infect Dis J 26(1):8–12

    Article  PubMed  Google Scholar 

  34. McCaughey G, Diamond P, Elborn JS, McKevitt M, Tunney MM (2013) Resistance development of cystic fibrosis respiratory pathogens when exposed to fosfomycin and tobramycin alone and in combination under aerobic and anaerobic conditions. PLoS One 8(7):e69763

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Horváth A, Dobay O, Kardos S, Ghidán Á, Tóth Á, Pászti J, Ungvári E, Horváth P, Nagy K, Zissman S, Füzi M (2012) Varying fitness cost associated with resistance to fluoroquinolones governs clonal dynamic of methicillin-resistant Staphylococcus aureus. Eur J Clin Microbiol Infect Dis 31(8):2029–2036

    Article  PubMed  Google Scholar 

  36. Nielsen KL, Pedersen TM, Udekwu KI, Petersen A, Skov RL, Hansen LH, Hughes D, Frimodt-Møller N (2012) Fitness cost: a bacteriological explanation for the demise of the first international methicillin-resistant Staphylococcus aureus epidemic. J Antimicrob Chemother 67(6):1325–1332

    Article  CAS  PubMed  Google Scholar 

  37. Tu YK, Gunnell D, Gilthorpe MS (2008) Simpson’s Paradox, Lord’s Paradox, and Suppression Effects are the same phenomenon—the reversal paradox. Emerg Themes Epidemiol 5:2

    Article  PubMed Central  PubMed  Google Scholar 

  38. Assmann SF, Pocock SJ, Enos LE, Kasten LE (2000) Subgroup analysis and other (mis)uses of baseline data in clinical trials. Lancet 355(9209):1064–1069

    Article  CAS  PubMed  Google Scholar 

  39. Lynch JP 3rd, Zhanel GG (2010) Streptococcus pneumoniae: epidemiology and risk factors, evolution of antimicrobial resistance, and impact of vaccines. Curr Opin Pulm Med 16(3):217–225

    PubMed  Google Scholar 

  40. Tong SY, Varrone L, Chatfield MD, Beaman M, Giffard PM (2015) Progressive increase in community-associated methicillin-resistant Staphylococcus aureus in Indigenous populations in northern Australia from 1993 to 2012. Epidemiol Infect 143:1519–1523

    Article  CAS  PubMed  Google Scholar 

  41. Hare KM, Stubbs E, Beissbarth J, Morris PS, Leach AJ (2010) Swab transport in Amies gel followed by frozen storage in skim milk tryptone glucose glycerol broth (STGGB) for studies of respiratory bacterial pathogens. J Microbiol Methods 81(3):253–255

    Article  CAS  PubMed  Google Scholar 

  42. Hare KM, Smith-Vaughan HC, Leach AJ (2011) Viability of respiratory pathogens cultured from nasopharyngeal swabs stored for up to 12 years at −70°C in skim milk tryptone glucose glycerol broth. J Microbiol Methods 86(3):364–367

    Article  PubMed  Google Scholar 

  43. Malhotra-Kumar S, Lammens C, Coenen S, Van Herck K, Goossens H (2007) Effect of azithromycin and clarithromycin therapy on pharyngeal carriage of macrolide-resistant streptococci in healthy volunteers: a randomised, double-blind, placebo-controlled study. Lancet 369(9560):482–490

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely thank the children and their families for participating in this study, and research nurses Gabrielle McCallum and Charmaine Mobberley for project management, data collection, and data management in Australia and NZ, respectively. We also thank the Menzies School of Health Research personnel: research nurses Clare Mckay, Kobi Schutz, and Lesley Versteegh for assistance with data collection, Vanya Hampton and Joanna Bugg for assistance with processing the Australian specimens, and Valerie Logan and Hayley Williams for their help with data management and data cleaning.

Funding

This work was supported by Australia’s National Health and Medical Research Council (grant numbers 389837, 545223, 1020561 to A.J.L., 1024175 to H.C.S.-V., 1058213 to A.B.C., 1068732 to A.C.C., 1072870 to K.M.H., 1083090 to P.C.V.); New Zealand’s Health Research Council (grant number 08/158); and the Auckland Medical Research Foundation (grant number 81542).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Hare.

Electronic supplementary material

Below are the links to the electronic supplementary material.

Online Resource 1

CLSI versus EUCAST antibiotic susceptibility criteria (PDF 52 kb)

Online Resource 2

Carriage and resistance at baseline and end-of-study, by country (Tables S1 and S2) (PDF 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hare, K.M., Grimwood, K., Chang, A.B. et al. Nasopharyngeal carriage and macrolide resistance in Indigenous children with bronchiectasis randomized to long-term azithromycin or placebo. Eur J Clin Microbiol Infect Dis 34, 2275–2285 (2015). https://doi.org/10.1007/s10096-015-2480-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-015-2480-0

Keywords

Navigation