Skip to main content
Log in

Airborne bacteria and antibiotic resistance genes in hospital rooms

  • Original paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

The microbial biodiversity of bioaerosols in recently occupied hospital rooms was assessed in a pulmonology unit. Environmental samples and isolates were also screened for antibiotics resistance genes. Biofilms from sink drains were also studied to evaluate whether sink drains constitute a potential source of bioaerosols in this environment and a reservoir for opportunistic bacteria and antibiotic resistance genes. Stenotrophomonas maltophilia was by far the most frequently isolated microorganisms from the biofilm, followed by Enterobacter cloacae. Airborne bacterial concentration ranged from 14 to 74 CFU m−3 and fungi ranged from 50 to 600 CFU m−3. Biofilm bacteria were outnumbered in aerosols by microorganisms affiliated with human skin flora. Nonetheless, they were recovered from air samples in low concentrations. Erythromycin resistance genes were detected in all air samples collected from hospital rooms, and tetracycline resistance genes were detected sporadically. Antibiotic resistance genes were found in a single drain suggesting that genes present in DNA extracts from air samples were not aerosolized from sink drains, but rather from an unknown source. Results obtained in this study suggest that bacteria from sink drains were not aerosolized in significant concentration. They still remain a concern because of the risk of aerial transmission associated with their presence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Adams, W. E., Habib, M., Berrington, A., Koerner, R., & Steel, D. H. (2006). Postoperative endophthalmitis caused by Sphingomonas paucimobilis. Journal of Cataract & Refractory Surgery, 32(7), 1238–1240.

    Article  Google Scholar 

  • Ager, B. P., & Tickner, J. A. (1983). The control of microbiological hazards associated with air-conditioning and ventilation systems. Annals of Occupational Hygiene, 27(4), 341–358.

    Article  CAS  Google Scholar 

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.

    CAS  Google Scholar 

  • Anaissie, E. J., Kuchar, R. T., Rex, J. H., Francesconi, A., Kasai, M., Muller, F. M., et al. (2001). Fusariosis associated with pathogenic fusarium species colonization of a hospital water system: A new paradigm for the epidemiology of opportunistic mold infections. Clinical Infectious Diseases, 33(11), 1871–1878.

    Article  CAS  Google Scholar 

  • Andersen, A. A. (1958). New sampler for the collection, sizing, and enumeration of viable airborne particles. Journal of Bacteriology, 76(5), 471–484.

    CAS  Google Scholar 

  • Appelbaum, P. C. (2006). MRSA—The tip of the iceberg. Clinical Microbiology & Infection, 12(Suppl 2), 3–10.

    CAS  Google Scholar 

  • Augustowska, M., & Dutkiewicz, J. (2006). Variability of airborne microflora in a hospital ward within a period of one year. Annals Of Agricultural And Environmental Medicine, 13(1), 99–106.

    Google Scholar 

  • Ayliffe, G. A., Babb, J. R., Collins, B. J., Lowbury, E. J., & Newsom, S. W. (1974). Pseudomonas aeruginosa in hospital sinks. The Lancet, 2(7880), 578–581.

    Article  CAS  Google Scholar 

  • Beggs, C. B. (2003). The airborne transmission of infection in hospital buildings: Fact of fiction? Indoor and Built Environment, 12, 9–18.

    Article  Google Scholar 

  • Beggs, C. B., Kerr, K. G., Noakes, C. J., Hathway, E. A., & Sleigh, P. A. (2008). The ventilation of multiple-bed hospital wards: Review and analysis. American Journal of Infection Control, 36(4), 250–259.

    Article  Google Scholar 

  • Brown, D. G., & Baublis, J. (1977). Reservoirs of Pseudomonas in an intensive care unit for newborn infants: Mechanisms of control. Journal of Pediatrics, 90(3), 453–457.

    Article  CAS  Google Scholar 

  • Chen, J., Yu, Z., Michel, F. C., Jr., Wittum, T., & Morrison, M. (2007). Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems. Applied and Environmental Microbiology, 73(14), 4407–4416.

    Article  CAS  Google Scholar 

  • Curtis, L., Cali, S., Conroy, L., Baker, K., Ou, C. H., Hershow, R., et al. (2005). Aspergillus surveillance project at a large tertiary-care hospital. Journal of Hospital Infection, 59(3), 188–196.

    Article  CAS  Google Scholar 

  • Dalben, M., Varkulja, G., Basso, M., Krebs, V. L., Gibelli, M. A., Van Der Heijden, I., et al. (2008). Investigation of an outbreak of Enterobacter cloacae in a neonatal unit and review of the literature. Journal of Hospital Infection, 70(1), 7–14.

    Article  CAS  Google Scholar 

  • Doring, G., Ulrich, M., Muller, W., Bitzer, J., Schmidt-Koenig, L., Munst, L., et al. (1991). Generation of Pseudomonas aeruginosa aerosols during handwashing from contaminated sink drains, transmission to hands of hospital personnel, and its prevention by use of a new heating device. Zentralblatt fur Hygiene und Umweltmedizin, 191(5–6), 494–505.

    CAS  Google Scholar 

  • Driscoll, J. A., Brody, S. L., & Kollef, M. H. (2007). The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs, 67(3), 351–368.

    Article  CAS  Google Scholar 

  • Dutka-Malen, S., Evers, S., & Courvalin, P. (1995). Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. Journal of Clinical Microbiology, 33(5), 1434.

    CAS  Google Scholar 

  • Edmond, M. B., Wallace, S. E., Mcclish, D. K., Pfaller, M. A., Jones, R. N., & Wenzel, R. P. (1999). Nosocomial bloodstream infections in United States hospitals: A three-year analysis. Clinical Infectious Diseases, 29(2), 239–244.

    Article  CAS  Google Scholar 

  • Eggleston, P. (2003). Environmental control for fungal allergen exposure. Current Allergy and Asthma Reports, 3(5), 424–429.

    Article  Google Scholar 

  • Elliott, B., Chang, B. J., Golledge, C. L., & Riley, T. V. (2007). Clostridium difficile-associated diarrhoea. International Medicine Journal, 37(8), 561–568.

    CAS  Google Scholar 

  • Fridkin, S., & Jarvis, W. (1996). Epidemiology of nosocomial fungal infections. Clinical Microbiology Reviews, 9(4), 499–511.

    CAS  Google Scholar 

  • Friedman, N. D., Korman, T. M., Fairley, C. K., Franklin, J. C., & Spelman, D. W. (2002). Bacteraemia due to Stenotrophomonas maltophilia: An analysis of 45 episodes. Journal of Infections, 45(1), 47–53.

    Article  CAS  Google Scholar 

  • Groll, A. H., & Walsh, T. J. (2001). Uncommon opportunistic fungi: New nosocomial threats. Clinical Microbiology & Infection, 7(Suppl 2), 8–24.

    CAS  Google Scholar 

  • Hall, R. A., & Papierok, B. (1982). Fungi as biological control agents of arthropods of agricultural and medical importance. Parasitology, 84(04), 205–240.

    Article  Google Scholar 

  • Hota, B. (2004). Contamination, disinfection, and cross-colonization: Are hospital surfaces reservoirs for nosocomial infection? Clinical Infectious Diseases, 39(8), 1182–1189.

    Article  Google Scholar 

  • Hota, S., Hirji, Z., Stockton, K., Lemieux, C., Dedier, H., Wolfaardt, G., et al. (2009). Outbreak of multidrug-resistant Pseudomonas aeruginosa colonization and infection secondary to imperfect intensive care unit room design. Infection Control and Hospital Epidemiology, 30(1), 25–33.

    Article  Google Scholar 

  • Hsueh, P. R., Teng, L. J., Yang, P. C., Chen, Y. C., Pan, H. J., Ho, S. W., et al. (1998). Nosocomial infections caused by Sphingomonas paucimobilis: Clinical features and microbiological characteristics. Clinical Infectious Diseases, 26(3), 676–681.

    Article  CAS  Google Scholar 

  • Jong, S.-C., Donovick, R., & Saul, L. N. (1989). Antitumor and antiviral substances from fungi, advances in applied microbiology (pp. 183–262). Oxford: Academic Press.

    Google Scholar 

  • Kilic, A., Senses, Z., Kurekci, A. E., Aydogan, H., Sener, K., Kismet, E., et al. (2007). Nosocomial outbreak of Sphingomonas paucimobilis bacteremia in a hemato/oncology unit. Japanese Journal of Infectious Diseases, 60(6), 394–396.

    Google Scholar 

  • Labriola, L., Ercam, V. B., Swinne, D., & Jadoul, M. (2009). Successful treatment with voriconazole of prolonged Paecilomyces lilacinus fungemia in a chronic hemodialyzed patient. Clinical Nephrology, 71(3), 355–358.

    CAS  Google Scholar 

  • Levin, M. H., Olson, B., Nathan, C., Kabins, S. A., & Weinstein, R. A. (1984). Pseudomonas in the sinks in an intensive care unit: Relation to patients. Journal of Clinical Pathology, 37(4), 424–427.

    Article  CAS  Google Scholar 

  • Li, C. S., & Hou, P. A. (2003). Bioaerosol characteristics in hospital clean rooms. The Science of The Total Environment, 305(1–3), 169–176.

    Article  CAS  Google Scholar 

  • Marchesi, J. R., Sato, T., Weightman, A. J., Martin, T. A., Fry, J. C., Hiom, S. J., et al. (1998). Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Applied and Environmental Microbiology, 64(2), 795–799.

    CAS  Google Scholar 

  • McBain, A. J., Bartolo, R. G., Catrenich, C. E., Charbonneau, D., Ledder, R. G., Rickard, A. H., et al. (2003). Microbial characterization of biofilms in domestic drains and the establishment of stable biofilm microcosms. Applied and Environmental Microbiology, 69(1), 177–185.

    Article  CAS  Google Scholar 

  • McDonald, L. C., Walker, M., Carson, L., Arduino, M., Aguero, S. M., Gomez, P., et al. (1998). Outbreak of Acinetobacter spp. bloodstream infections in a nursery associated with contaminated aerosols and air conditioners. The Pediatric Infectious Disease Journal, 17(8), 716–722.

    Article  CAS  Google Scholar 

  • McGeer, A., Low, D. E., Penner, J., Ng, J., Goldman, C., & Simor, A. E. (1990). Use of molecular typing to study the epidemiology of Serratia marcescens. Journal of Clinical Microbiology, 28(1), 55–58.

    CAS  Google Scholar 

  • Moore, J. E., Thompson, I., Crowe, M., Xu, J., Shaw, A., Millar, B. C., et al. (2002). Burkholderia cepacia from a sink drain. Journal of Hospital Infection, 50(3), 235–237.

    Article  CAS  Google Scholar 

  • Muder, R. R., Harris, A. P., Muller, S., Edmond, M., Chow, J. W., Papadakis, K., et al. (1996). Bacteremia due to Stenotrophomonas (Xanthomonas) maltophilia: A prospective, multicenter study of 91 episodes. Clinical Infectious Diseases, 22(3), 508–512.

    CAS  Google Scholar 

  • Muyzer, G., De Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59(3), 695–700.

    CAS  Google Scholar 

  • Perryman, F. A., & Flournoy, D. J. (1980). Prevalence of gentamicin- and amikacin-resistant bacteria in sink drains. Journal of Clinical Microbiology, 12(1), 79–83.

    CAS  Google Scholar 

  • Riser, E., Noone, P., & Thompson, R. E. (1978). The use of a fluorescence typing method in an epidemiological study of Klebsiella infection in a London hospital. The Journal of Hygiene, 80(1), 43–56.

    Article  CAS  Google Scholar 

  • Roberts, K., Hathway, A., Fletcher, L. A., Beggs, C. B., Elliott, M. W., & Sleigh, P. A. (2006). Bioaerosol production on a respiratory ward. Indoor and Built Environment, 15(1), 35–40.

    Article  Google Scholar 

  • Sarica, S., Asan, A., Otkun, M. T., & Ture, M. (2002). Monitoring indoor airborne fungi and bacteria in the different areas of Trakya University Hospital, Edirne, Turkey. Indoor and Built Environment, 11, 285–292.

    Article  Google Scholar 

  • Senol, E. (2004). Stenotrophomonas maltophilia: The significance and role as a nosocomial pathogen. Journal of Hospital Infection, 57(1), 1–7.

    Article  CAS  Google Scholar 

  • Shiomori, T., Miyamoto, H., & Makishima, K. (2001). Significance of airborne transmission of methicillin-resistant Staphylococcus aureus in an otolaryngology-head and neck surgery unit. Archives of Otolaryngology—Head & Neck Surgery, 127(6), 644–648.

    CAS  Google Scholar 

  • Sisti, M., Schiavano, G. F., Salvaggio, L., Albano, A., & Brandi, G. (2000). Evaluation of hospital indoor fungal air pollution. Igiene Moderna, 113(2), 147–160.

    Google Scholar 

  • Squier, C., Yu, V. L., & Stout, J. E. (2000). Waterborne nosocomial infections. Current Infectious Disease Reports, 2(6), 490–496.

    Article  Google Scholar 

  • Streifel, A. J., Stevens, P. P., & Rhame, F. S. (1987). In-hospital source of airborne Penicillium species spores. Journal of Clinical Microbiology, 25(1), 1–4.

    CAS  Google Scholar 

  • Tang, J. W., Li, Y., Eames, I., Chan, P. K., & Ridgway, G. L. (2006). Factors involved in the aerosol transmission of infection and control of ventilation in healthcare premises. Journal of Hospital Infection, 64(2), 100–114.

    Article  CAS  Google Scholar 

  • Thorne, P. S., & Duchaine, C. (2007). Airborne bacteria and endotoxin. In C. J. Hurst, R. M. Crawford, J. L. Garland, D. A. Lipson, A. L. Mills, & L. D. Stetzenbach (Eds.), Manual of environmental microbiology (pp. 989–1004). Washington, DC: ASM Press.

    Google Scholar 

  • Trautmann, M., Lepper, P. M., & Haller, M. (2005). Ecology of Pseudomonas aeruginosa in the intensive care unit and the evolving role of water outlets as a reservoir of the organism. American Journal of Infection Control, 33(5 Suppl 1), S41–S49.

    Article  Google Scholar 

  • Uduman, S. A., Farrukh, A. S., Nath, K. N. R., Zuhair, M. Y. H., Ifrah, A., Khawla, A. D., et al. (2002). An outbreak of Serratia marcescens infection in a special-care baby unit of a community hospital in United Arab Emirates: The importance of the air conditioner duct as a nosocomial reservoir. Journal of Hospital Infection, 52(3), 175–180.

    Article  CAS  Google Scholar 

  • Van Saene, H. K., Van Putte, J. C., Van Saene, J. J., Van De Gronde, T. W., & Van Warmerdam, E. G. (1989). Sink flora in a long-stay hospital is determined by the patients’ oral and rectal flora. Epidemiology and Infection, 102(2), 231–238.

    Article  Google Scholar 

  • Walsh, T. J., & Groll, A. H. (1999). Emerging fungal pathogens: Evolving challenges to immunocompromised patients for the twenty-first century. Transplant Infectious Disease, 1(4), 247–261.

    Article  CAS  Google Scholar 

  • Yu, Z., Michel, F. C., Jr., Hansen, G., Wittum, T., & Morrison, M. (2005). Development and application of real-time PCR assays for quantification of genes encoding tetracycline resistance. Applied and Environmental Microbiology, 71(11), 6926–6933.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Gilbert Y. was a Quebec Respiratory Health training fellow, sponsored by the Institute of Circulatory and Respiratory Health of Canadian Institutes of Health Research (CIHR) and the Health Respiratory Network of the Fonds de la Recherche en Santé du Québec (FRSQ). Duchaine C. acknowledges FRSQ Junior 2 Scholarship and is a member of the FRSQ Respiratory Health Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Duchaine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbert, Y., Veillette, M. & Duchaine, C. Airborne bacteria and antibiotic resistance genes in hospital rooms. Aerobiologia 26, 185–194 (2010). https://doi.org/10.1007/s10453-010-9155-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-010-9155-1

Keywords

Navigation