Skip to main content
Log in

Co-activation of P2Y2 Receptor and TRPV Channel by ATP: Implications for ATP Induced Pain

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    Extracellular ATP is recognized as a peripheral modulator of pain. Activation of ionotropic P2X receptors in sensory neurons has been implicated in induction of pain, whereas metabotropic P2Y receptors in potentiation of pain induced by chemical or physical stimuli via capsaicin sensitive TRPV1 channel. Here we report that P2Y2 receptor activation by ATP can activate the TRPV1 channel in absence of any other stimuli.

  2. 2.

    ATP-induced Ca2 + signaling was studied in Neuro2a cells. ATP evoked release of intracellular Ca2 + from ER and Ca2 + influx through a fast inactivating channel. The Ca2 + response was induced by P2Y receptor agonists in the order of potency ATP ≥ UTP ≥ ATPγ S > ADP and was inhibited by suramin and PPADS. The P2X receptor agonist α β methyl ATP was ineffective.

  3. 3.

    The Ca2 + influx was blocked by ruthenium red, an inhibitor of TRPV1 channel. Capsaicin, the most potent activator of the TRPV1 channel, evoked a fast inactivating Ca2 + transient suggesting the presence of endogenous TRPV1 channels in Neuro2a cells. NMS and PDBu, repressors of IP3 formation, drastically inhibited both the components of Ca2 + response.

  4. 4.

    Our data show co-activation of the P2Y2 receptor and capsaicin sensitive TRPV1 channel by ATP. Such functional interaction between endogenous P2Y2 receptor and TRPV1 channels could explain the ATP-induced pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADP:

adenosine 5′-diphosphate

AMP:

adenosine 5′-monophosphate

ATP:

adenosine 5′-triphosphate

ATPγS:

adenosine 5′-[γ -thio]triphosphate

αβ methyl ATP:

α,β-methylene adenosine 5′-triphosphate

2 Me-S-ATP:

2(methyl thio) adenosine 5′-triphosphate

CCE:

capacitative calcium entry

CPA:

cyclopiazonic acid

EGTA:

ethylene glycol-bis (2-aminoethylether)-N,N,N′,N′-tetraacetic acid

GTP:

guanosine 5′-triphoshate

IP3:

inositol 1,4,5-triphosphate

NMS:

neomycin sulphate

PDBu:

phorbol 12,13-dibutyrate

PPADS:

pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid)

PIP2:

phosphoinositol-4,5-bisphosphate

PKC:

protein kinase C

PLC:

phosholipase C

PTx:

pertussis toxin

SOC:

store-operated calcium entry

TRPV:

transient receptor potential channel, subfamily V

TRPC:

transient receptor potential channel, subfamily C

UDP:

uridine 5′-diphoshate

UTP:

uridine 5′-triphoshate

References

  • Burnstock, G., and Wood, J. N. (1996). Purinergic receptors: Their role in nociception and primary afferent neurotransmission. Curr. Opin. Neurobiol. 6:526–532

    Article  PubMed  Google Scholar 

  • Carney, D. H., Scott, D. L., Gordon, E. A., and LaBelle, E. F. (1985). Phoshoinositides in mitogenesis: Neomycin inhibits thrombin-stimulated phoshoinositde turnover and initiation of cell proliferation. Cell 42:479–488.

    Article  PubMed  Google Scholar 

  • Caterina, M. J. (2001). Quenching fire with fat: Phosphatidylinositides as putative regulators of pain. Trends Pharmacol. Sci. 22:602–604.

    Article  PubMed  Google Scholar 

  • Caterina, M. J., and Julius, D. (2001). The vanilloid receptor: A molecular gateway to the pain pathway. Ann. Rev. Neurosci. 24:487–517

    Article  PubMed  Google Scholar 

  • Chen, C. C., and Chen, W. C. (1997). P2Y receptor linked to phospholipase C: Stimulation of Neuro2a cells by UTP and ATP and possible regulation by protein kinase C subtype epsilon. J. Neurochem. 69:1409–1416.

    PubMed  Google Scholar 

  • Chizh, B. A., and Illes, P. (2001). P2X receptors and nociception. Pharmacol. Rev. 53:553–568.

    PubMed  Google Scholar 

  • Chuang, H. H., Prescott, E. D., Kong, H., Shields, S., Jordt, S. E., Basbaum, A. I., Chao, M. V., and Julius, D. (2001). Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns (4,5)P2-mediated inhibition. Nature 411:957–962.

    Article  PubMed  Google Scholar 

  • Cook, S. P., and McCleskey, E. W. (2002). Cell damage excites nociceptors through release of cytosolic ATP. Pain 95:41–47.

    Article  PubMed  Google Scholar 

  • Fields, R. D., and Stevens, B. (2000). ATP: An extracellular signaling molecule between neuron and glia. Trends Neurosci. 23:625–633.

    Article  PubMed  Google Scholar 

  • Fredholm, B. B. (1995). Purinoceptors in the nervous system. Pharmacol. Toxicol. 76:228–239.

    PubMed  Google Scholar 

  • Gunthorpe, M. J., Benham, C. D., Randall, A., and Davis, J. B. (2002). The diversity in the vanilloid (TRPV) receptor family of ion channels. Trends Pharmacol. Sci. 23:183–191.

    Article  PubMed  Google Scholar 

  • Hamilton, S. G., and McMahon, S. B. (2000). ATP as a peripheral mediator of pain. J Auton. Nerv. Syst. 81:187–194.

    Article  PubMed  Google Scholar 

  • Illes, P., and Alexandre Ribeiro, J. (2004). Molecular physiology of P2 receptors in the central nervous system. Eur. J. Pharmacol. 483:5–17.

    Article  PubMed  Google Scholar 

  • Joshi, P. G., and Mishra, S. (1998). A novel type of Ca2+ channel activated by antibody to galactocerebroside in U-87 MG cells. Life Sci. 62:409–444.

    Google Scholar 

  • Khakh, B. S., Burnstock, G., Kennedy, C., King, B. F., North, R. A., Seguela, P., Voigt, M., and Humphrey, P. P. A. (2001). International union of pharmacology XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits. Pharmacol. Rev. 53:107–118.

    PubMed  Google Scholar 

  • King, B. F., Townsend-Nicholson, A., and Burnstock, G. (1998). Metabotropic receptors for ATP and UTP: Exploring the correspondence between native and recombinant nucleotide receptors. Trends Pharmacol. 19:506–514.

    Article  Google Scholar 

  • Kiselyov, K., Xu, X., Mozhayeva, G., Kuo, T., Pessah, I., Mignery, G., Zhu, X., Birnbaumer, L., and Muallem, S. (1998). Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 396:478–482.

    Article  PubMed  Google Scholar 

  • Moriyama, T., Iida, T., Kobayashi, K., Higashi, T., Fukuoka, T., Tsumura, H., Leon, C., Suzuki, N., Inoue, K., Gachet, C., Noguchi, K., and Tominaga, M. (2003). Possible involvement of P2Y2 metabotropic receptors in ATP-induced transient receptor potential vanilloid receptor 1-mediated thermal hypersensitivity. J. Neurosci. 23:6058–6062.

    PubMed  Google Scholar 

  • Nakamura, F., and Strittmatter, S. M. (1996). P2Y1 purinergic receptors in sensory neurons: Contribution to touch-induced impulse generation. Proc. Natl. Acad. Sci. USA. 93:10465– 10470.

    Article  PubMed  Google Scholar 

  • Neary, J. T., Rathbone, M. P., Cattabeni, F., Abbrachio, M. P., and Burnstock, G. (1996). Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends Neurosci. 19:13–18.

    Article  PubMed  Google Scholar 

  • Nishizuka, Y. (1992). Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258: 607–614.

    PubMed  Google Scholar 

  • North, R. A. (2002). Molecular physiology of P2X Receptors. Physiol Rev. 82:1013–1067.

    PubMed  Google Scholar 

  • Ohta, T., Morishita, M., Mori, Y., and Ito, S. (2004). Ca2+ store-independent augmentation of [Ca2+]i responses to G-protein coupled receptor activation in recombinantly TRPC5-expressed rat pheochromocytoma (PC12) cells. Neurosci. Lett. 358:161–164.

    Article  PubMed  Google Scholar 

  • Olsson, R. A., and Pearson, J. D. (1990). Cardiovascular purinoceptors. Physiol. Rev. 70:761–845.

    PubMed  Google Scholar 

  • Premkumar, L. S., and Ahern, G. P. (2000). Induction of vanilloid receptor channel activity by protein kinase C. Nature 408:985–990.

    Article  PubMed  Google Scholar 

  • Putney, J. W., Jr. (2003). Capacitative calcium entry in the nervous system. Cell Calcium 34:339–344.

    Article  PubMed  Google Scholar 

  • Ralevic, V., and Burnstock, G. (1998). Receptors for purines and pyrimidines. Pharmacol. Rev. 50:413–492.

    PubMed  Google Scholar 

  • Rathbone, M. P., Middlemiss, P. J., Gysbers, J. W., Andrew, C., Herman, M. A., Reed, J. K., Ciccarelli, R., Di Iorio, P., and Caciagli, F. (1999). Trophic effects of purines in neurons and glial cells. Prog. Neurobiol. 59:663–690.

    Article  PubMed  Google Scholar 

  • Ravichandra, B., and Joshi, P. G. (1999). Regulation of transmembrane signaling by ganglioside GM1: Interaction of anti-GM1 with Neuro2a cells. J. Neurochem. 73:557–567.

    Article  PubMed  Google Scholar 

  • Sanada, M., Yasuda, H., Omatsu-Kanbe, M., Sango, K., Isono, T, Matsuura, H., and Kikkawa, R. (2002). Increase in intracellular Ca2+ and calcitonin gene-related peptide release through metabotropic P2Y receptors in rat dorsal root ganglion cells. Neuroscience 111:413–422.

    Article  PubMed  Google Scholar 

  • Santos, A. R., and Calixto, J. B. (1997). Ruthenium red and capsazepine antinociceptive effect in formalin and capsaicin models of pain in mice. Neurosci. Lett. 235:73–76.

    Article  PubMed  Google Scholar 

  • Tominaga, M., Wada, M., and Masu, M. (2001). Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP evoked pain and hyperalgesia. Proc. Natl. Acad. Sci. USA. 98:6951–6956.

    Article  PubMed  Google Scholar 

  • Tsuda, M., Ueno, S., and Inoue, K. (1999). Evidence for the involvement of spinal endogenous ATP and P2X receptors in nociceptive responses caused by formalin and capsaicin in mice. Br. J. Pharmacol. 128:1497–1507.

    Article  PubMed  Google Scholar 

  • Vellani, V., Mapplebeck, S., Moriondo, A., Davis, J. B., and McNaughton, P. A. (2001). Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J. Physiol. 534:813–825.

    Article  PubMed  Google Scholar 

  • Wildman, S. S., Unwin, R. J., and King, B. F. (2003). Extended pharmacological profiles of rat P2Y2 and rat P2Y4 receptors and their sensitivity to extracellular H+ and Zn2+ ions. Br. J. Pharmacol. 140:1177–1186.

    Article  PubMed  Google Scholar 

  • Zitt, C., Halaszovich, C. R., and Luckhoff, A. (2002). The TRP family of cation channels: Probing and advancing the concepts on receptor-activated calcium entry. Prog. Neurobiol. 66:243–264.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakshmi, S., Joshi, P.G. Co-activation of P2Y2 Receptor and TRPV Channel by ATP: Implications for ATP Induced Pain. Cell Mol Neurobiol 25, 819–832 (2005). https://doi.org/10.1007/s10571-005-4936-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-005-4936-8

Keywords

Navigation