Elsevier

Clinical Nutrition

Volume 28, Issue 2, April 2009, Pages 203-208
Clinical Nutrition

Original article
Plasma branched-chain amino acid levels and muscle energy metabolism in patients with chronic obstructive pulmonary disease

https://doi.org/10.1016/j.clnu.2009.01.019Get rights and content

Summary

Background & aims

Although several studies have shown that plasma concentrations of branched-chain amino acids (BCAAs) are reduced in patients with chronic obstructive pulmonary disease (COPD), little is understood about how low concentrations of BCAAs limit exercise in such patients. The present study investigated whether plasma BCAAs are related to energy metabolism in exercising muscle using 31P-magnetic resonance spectroscopy (MRS).

Methods

We analyzed the plasma amino acid profiles of 23 male patients with COPD (aged 69.2 ± 5.1 years) and of 7 healthy males (aged 64.1 ± 6.0 years). We normalized the exercise intensity of repetitive lifting by adjusting the weight to 7% of the maximal grip power. The intracellular pH and the phosphocreatine (PCr) index (PCr/(PCr + Pi); Pi, inorganic phosphate) were calculated from MR spectra. We evaluated the relationship between intracellular pH and PCr index at the completion of exercise and the plasma BCAA concentration.

Results

Glutamine concentrations were elevated in patients with COPD compared with healthy individuals. Plasma concentrations of BCAAs correlated with intracellular pH and PCr index at the completion of exercise.

Conclusions

The findings are consistent with the notion that BCAAs affect muscle energy metabolism during exercise in patients with COPD.

Introduction

Recent studies have demonstrated that reduced oxidative capacity in skeletal muscles correlates with an accelerated lactate response to exercise in patients with chronic obstructive pulmonary disease (COPD).1, 2 We previously found, using 31-phosphorus nuclear magnetic resonance spectroscopy (31P-MRS), that the skeletal muscle metabolism of patients with chronic respiratory impairment undergoes specific changes.3, 4 Skeletal muscle intracellular pH (pHi) and high-energy phosphate compounds can be dynamically measured using noninvasive 31P-MRS.5 A decrease in pHi during exercise suggests lactic acid accumulation in exercising muscle.5, 6 Patients with chronic respiratory impairment have significant decreases in phosphocreatine (PCr) and in pHi during even mild exercise, suggesting that adenosine triphosphate (ATP) production is reduced and that lactate rapidly accumulates in their muscles. Several factors such as inactivity, malnutrition or hypoxemia might contribute to altered muscle metabolism.3, 7, 8, 9

Muscle wasting contributes to muscle weakness and exercise limitations in patients with COPD10 in whom weight loss and muscle wasting are common features.11 Skeletal muscle is the major protein store that supplies amino acids to other tissues under specific conditions. Plasma-free amino acid concentrations express the balance between exogenous uptake and intercurrent metabolites in protein synthesis and breakdown.12 Several investigators have reported that the amino acid profile is altered in the plasma and skeletal muscles of patients with COPD.13, 14, 15, 16 Most of these studies have shown that the plasma concentrations of the branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are reduced.13, 15, 16 Yoneda et al.15 demonstrated that decreased concentrations of BCAAs in COPD are specifically related to weight loss and decreased muscle mass.

Muscle energy metabolism might be affected by BCAAs during exercise as energy sources and as substrates that expand the pool of tricarboxylic acid (TCA) cycle intermediates.12 However, few studies have investigated whether changes in amino acid profiles in plasma affect exercise metabolism in COPD patients.17 Muscle energy metabolism is similarly altered in patients with liver cirrhosis who also usually have decreased plasma BCAAs, that is, a significant decrease in PCr and in pHi during forearm exercise.18 The present study uses 31P-MRS to clarify whether or not plasma amino acid profiles, especially those of BCAAs, are related to the altered energy metabolism of exercising muscle in patients with COPD.

Section snippets

Patients and controls

We studied 23 ambulatory male outpatients with stable COPD (aged 69.2 ± 5.1 years) diagnosed according to spirometric findings from moderate to very severe airflow limitation (FEV1/FVC <70% and FEV1/FEV1pred <80%; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity).19 None of the patients had ever received systemic corticosteroid therapy and 3 of them had been treated with oxygen inhalation only while walking. The exclusion criteria were malignancy, cardiac failure, renal failure,

Physical characteristics

Table 1 shows the physical characteristics of the participants. None of BMI, forearm circumference, %fat or grip power significantly differed between the patients and healthy individuals, although 4 of the patients were malnourished (BMI <20). Table 2 shows the spirometric data from the healthy individuals and the patients with COPD. The FEV1 value was 1.14 ± 0.35 L in the patients. Based on the GOLD criteria,19 COPD in 9 of the 23 patients corresponded to stage II, 10 to stage III and 4 to stage

Discussion

We investigated the relationship between the plasma branched-chain amino acid profile and muscle energy metabolism in COPD patients and found that plasma concentrations of leucine, isoleucine and valine correlated with pHi and PCr index at the completion of exercise. These findings suggested that the plasma concentrations of BCAAs contribute to alterations in muscle energy metabolism during exercise in COPD patients.

Conflicts of interest

The authors have no conflict of interest regarding the subject of the manuscript.

Acknowledgements

This study was supported in part by a grant from the Department of Home Care Service, Tokai University School of Medicine.

References (29)

  • A.A. Sapega et al.

    Phosphorus nuclear magnetic resonance: A non-invasive technique for the study of muscle bioenergetics during exercise

    Med Sci Sport Exerc

    (1987)
  • D.J. Taylor et al.

    Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study

    Mol Biol Med

    (1983)
  • E. Sala et al.

    Effects of endurance training on skeletal muscle bioenergetics in chronic obstructive pulmonary disease

    Am J Resp Crit Care Med

    (1999)
  • J.F. Payen et al.

    Muscular metabolism during oxygen supplementation in patients with chronic hypoxemia

    Am Rev Respir Dis

    (1993)
  • Cited by (20)

    • A metabolomics study on effects of polyaromatic compounds in oil sand extracts on the respiratory, hepatic and nervous systems using three human cell lines

      2019, Environmental Research
      Citation Excerpt :

      Exposure to A549 lung cells to PACs significantly up-regulated the expression of L-cysteine, L-leucine, L-glutamine, L-phenylalanine, and L-tyrosine. The elevated concentrations of amino acids L-cysteine (Samuelsson, 1991) and L-glutamine (Kutsuzawa et al., 2009) play essential roles in metabolic changes, known to cause respiratory effects. Glutamine plays a variety of biochemical functions including protein synthesis, regulation of acid-base balance, as a source of cellular energy, and many other processes and it can be up-regulated as a defence of oxidative stress (Liu et al., 2009).

    • Validation of Predictive Metabolic Syndrome Biomarkers of World Trade Center Lung Injury: A 16-Year Longitudinal Study

      2019, Chest
      Citation Excerpt :

      Specifically, a diet that is low in saturated fat intake and has a low ratio of omega-6 to omega-3 fatty acids may help to correct high ceramide levels and the imbalance in phospholipid-derived long-chain polyunsaturated fatty acid metabolites, which could have downstream beneficial effects on inflammatory and insulin signaling pathways.60-62 In patients with advanced lung diseases such as COPD, branched chain amino acid supplements improve health outcomes.63,64 Dietary interventions that have focused on weight loss in patients with obstruction show improvement of both FEV1 and FVC by as much as 22% in as little as 15 days.65,66

    • Nutritional supplementation in patients with chronic obstructive pulmonary disease

      2016, Journal of the Formosan Medical Association
      Citation Excerpt :

      Skeletal muscle dysfunction may result from an array of pathophysiological conditions in COPD such as inflammation, malnutrition, and oxidative stress.19,41 In COPD patients with accelerated loss of FFM, there is a direct correlation between low plasma concentrations of BCAA and low FFM body composition and muscle energy metabolism.19,42 The dietary supplementation of a soy protein meal with BCAA enhanced whole-body protein synthesis in patients with COPD.43

    • Enhanced anabolic response to milk protein sip feeding in elderly subjects with COPD is associated with a reduced splanchnic extraction of multiple amino acids

      2012, Clinical Nutrition
      Citation Excerpt :

      Patients with COPD with a deprived nutritional state are often characterized by reduced plasma BCAA levels in the postabsorptive state6,7 without significantly elevated leucine turnover levels.8 Low plasma BCAA levels in COPD are associated with disturbances in muscle energy metabolism during exercise,9 suggesting that preservation of BCAA levels is of importance in COPD. In contrast, COPD patients with preserved body weight have increased leucine turnover8 and preserved plasma leucine levels.6

    View all citing articles on Scopus
    View full text