Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action

Abstract

The circadian system is an important regulator of immune function. Human inflammatory lung diseases frequently show time-of-day variation in symptom severity and lung function, but the mechanisms and cell types underlying these effects remain unclear. We show that pulmonary antibacterial responses are modulated by a circadian clock within epithelial club (Clara) cells. These drive circadian neutrophil recruitment to the lung via the chemokine CXCL5. Genetic ablation of the clock gene Bmal1 (also called Arntl or MOP3) in bronchiolar cells disrupts rhythmic Cxcl5 expression, resulting in exaggerated inflammatory responses to lipopolysaccharide and an impaired host response to Streptococcus pneumoniae infection. Adrenalectomy blocks rhythmic inflammatory responses and the circadian regulation of CXCL5, suggesting a key role for the adrenal axis in driving CXCL5 expression and pulmonary neutrophil recruitment. Glucocorticoid receptor occupancy at the Cxcl5 locus shows circadian oscillations, but this is disrupted in mice with bronchiole-specific ablation of Bmal1, leading to enhanced CXCL5 expression despite normal corticosteroid secretion. The therapeutic effects of the synthetic glucocorticoid dexamethasone depend on intact clock function in the airway. We now define a regulatory mechanism that links the circadian clock and glucocorticoid hormones to control both time-of-day variation and the magnitude of pulmonary inflammation and responses to bacterial infection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The pulmonary inflammatory response to LPS administration is gated by the circadian clock.
Figure 2: Targeted ablation of Bmal1 in CCSP-expressing cells disrupts circadian rhythmicity in whole lung.
Figure 3: Loss of the club cell clock results in enhanced neutrophil responses to LPS.
Figure 4: BMAL1 regulates CXCL5 expression in CCSP-positive cells.
Figure 5: Endogenous glucocorticoid rhythms regulate rhythmic repression of Cxcl5.
Figure 6: Anti-inflammatory effects of glucocorticoids depend on a bronchiolar clock.

Similar content being viewed by others

References

  1. Martinez, F.J., Donohue, J.F. & Rennard, S.I. The future of chronic obstructive pulmonary disease treatment–difficulties of and barriers to drug development. Lancet 378, 1027–1037 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Scheiermann, C. et al. Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity 37, 290–301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Scheiermann, C., Kunisaki, Y. & Frenette, P.S. Circadian control of the immune system. Nat. Rev. Immunol. 13, 190–198 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Keller, M. et al. A circadian clock in macrophages controls inflammatory immune responses. Proc. Natl. Acad. Sci. USA 106, 21407–21412 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gibbs, J.E. et al. The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc. Natl. Acad. Sci. USA 109, 582–587 (2012).

    Article  PubMed  Google Scholar 

  6. Wang, X., Reece, S.P., Van Scott, M.R. & Brown, J.M. A circadian clock in murine bone marrow-derived mast cells modulates IgE-dependent activation in vitro. Brain Behav. Immun. 25, 127–134 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Shackelford, P.G. & Feigin, R.D. Periodicity of susceptibility to pneumococcal infection: influence of light and adrenocortical secretions. Science 182, 285–287 (1973).

    Article  CAS  PubMed  Google Scholar 

  8. Silver, A.C., Arjona, A., Walker, W.E. & Fikrig, E. The circadian clock controls Toll-like receptor 9-mediated innate and adaptive immunity. Immunity 36, 251–261 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Halberg, F., Johnson, N.E.A., Brown, B.W. & Bittner, J.J. Susceptibility rhythm to E. coli endotoxin and bioassay. Proc. Soc. Exp. Biol. Med. 103, 142–144 (1960).

    Article  CAS  PubMed  Google Scholar 

  10. Castanon-Cervantes, O. et al. Dysregulation of inflammatory responses by chronic circadian disruption. J. Immunol. 185, 5796–5805 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Bellet, M.M. et al. Circadian clock regulates the host response to Salmonella. Proc. Natl. Acad. Sci. USA 110, 9897–9902 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Witko-Sarsat, V., Rieu, P., Descamps-Latscha, B., Lesavre, P. & Halbwachs-Mecarelli, L. Neutrophils: molecules, functions and pathophysiological aspects. Lab. Invest. 80, 617–653 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Perkins, N.D. Integrating cell-signalling pathways with NF-κB and IKK function. Nat. Rev. Mol. Cell Biol. 8, 49–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Ota, T., Fustin, J.M., Yamada, H., Doi, M. & Okamura, H. Circadian clock signals in the adrenal cortex. Mol. Cell. Endocrinol. 349, 30–37 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Dickmeis, T. Glucocorticoids and the circadian clock. J. Endocrinol. 200, 3–22 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Nader, N., Chrousos, G.P. & Kino, T. Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: potential physiological implications. FASEB J. 23, 1572–1583 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lamia, K.A. et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480, 552–556 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Han, D.H., Lee, Y.J., Kim, K., Kim, C.J. & Cho, S. Modulation of glucocorticoid receptor induction properties by core circadian clock proteins. Mol. Cell. Endocrinol. 383, 170–180 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Aschoff, J. in Circadian Clocks (ed. Aschoff, J.) 95–111 (Amsterdam, North-Holland, 1965).

  20. Paladino, N., Leone, M.J., Plano, S.A. & Golombek, D.A. Paying the circadian toll: the circadian response to LPS injection is dependent on the Toll-like receptor 4. J. Neuroimmunol. 225, 62–67 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Kadioglu, A. et al. Host cellular immune response to pneumococcal lung infection in mice. Infect. Immun. 68, 492–501 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoo, S.H. et al. PERIOD2:LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. USA 101, 5339–5346 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Elizur, A. et al. Clara cells impact the pulmonary innate immune response to LPS. Am. J. Physiol. Lung Cell. Mol. Physiol. 293, L383–L392 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Hirota, T. et al. Identification of small molecule activators of cryptochrome. Science 337, 1094–1097 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gibbs, J.E. et al. Circadian timing in the lung; a specific role for bronchiolar epithelial cells. Endocrinology 150, 268–276 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Li, S. et al. Foxp1/4 control epithelial cell fate during lung development and regeneration through regulation of anterior gradient 2. Development 139, 2500–2509 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guilding, C. et al. Suppressed cellular oscillations in after-hours mutant mice are associated with enhanced circadian phase-resetting. J. Physiol. (Lond.) 591, 1063–1080 (2013).

    Article  CAS  Google Scholar 

  28. Jeyaseelan, S. et al. Induction of CXCL5 during inflammation in the rodent lung involves activation of alveolar epithelium. Am. J. Respir. Cell Mol. Biol. 32, 531–539 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mei, J. et al. CXCL5 regulates chemokine scavenging and pulmonary host defense to bacterial infection. Immunity 33, 106–117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. John, S. et al. Interaction of the glucocorticoid receptor with the chromatin landscape. Mol. Cell 29, 611–624 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Dalm, S., Brinks, V., van der Mark, M.H., de Kloet, E.R. & Oitzl, M.S. Non-invasive stress-free application of glucocorticoid ligands in mice. J. Neurosci. Methods 170, 77–84 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. The ENCODE Project Consortium. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  33. Vyas, S. et al. Insights into negative regulation by the glucocorticoid receptor from genome-wide profiling of inflammatory cistromes. Mol. Cell 49, 1–3 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grommes, J. & Soehnlein, O. Contribution of neutrophils to acute lung injury. Mol. Med. 17, 293–307 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Nakagome, K., Matsushita, S. & Nagata, M. Neutrophilic inflammation in severe asthma. Int. Arch. Allergy Immunol. 158 (suppl. 1) 96–102 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Quint, J.K. & Wedzicha, J.A. The neutrophil in chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 119, 1065–1071 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Eash, K.J., Greenbaum, A.M., Gopalan, P.K. & Link, D.C. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J. Clin. Invest. 120, 2423–2431 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Suratt, B.T. et al. Role of the CXCR4/SDF-1 chemokine axis in circulating neutrophil homeostasis. Blood 104, 565–571 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Kobayashi, Y. Neutrophil infiltration and chemokines. Crit. Rev. Immunol. 26, 307–316 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Mei, J. et al. Cxcr2 and Cxcl5 regulate the IL-17/G-CSF axis and neutrophil homeostasis in mice. J. Clin. Invest. 122, 974–986 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tuller, T., Atar, S., Ruppin, E., Gurevich, M. & Achiron, A. Common and specific signatures of gene expression and protein-protein interactions in autoimmune diseases. Genes Immun. 14, 67–82 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Heit, B., Tavener, S., Raharjo, E. & Kubes, P. An intracellular signaling hierarchy determines direction of migration in opposing chemotactic gradients. J. Cell Biol. 159, 91–102 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hwang, J.W., Sundar, I.K., Yao, H., Sellix, M.T. & Rahman, I. Circadian clock function is disrupted by environmental tobacco/cigarette smoke, leading to lung inflammation and injury via a SIRT1-BMAL1 pathway. FASEB J. 28, 176–194 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vasu, V.T., Cross, C.E. & Gohil, K. Nr1d1, an important circadian pathway regulatory gene, is suppressed by cigarette smoke in murine lungs. Integr. Cancer Ther. 8, 321–328 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Smith, J.B. & Herschman, H.R. Glucocorticoid-attenuated response genes encode intercellular mediators, including a new C–X-C chemokine. J. Biol. Chem. 270, 16756–16765 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Li, H. et al. Cre-mediated recombination in mouse Clara cells. Genesis 46, 300–307 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McGrath, E.E. et al. TNF-related apoptosis-inducing ligand (TRAIL) regulates inflammatory neutrophil apoptosis and enhances resolution of inflammation. J. Leukoc. Biol. 90, 855–865 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Meng, Q.J. et al. Ligand modulation of REV-ERBα function resets the peripheral circadian clock in a phasic manner. J. Cell Sci. 121, 3629–3635 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Lee, T.I., Johnstone, S.E. & Young, R.A. Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat. Protoc. 1, 729–748 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Okamoto, K., Onai, K. & Ishiura, M. RAP, an integrated program for monitoring bioluminescence and analyzing circadian rhythms in real time. Anal. Biochem. 340, 193–200 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J.S. Takahashi, Southwestern University, for the gift of the Per2-luc mice, F. Scott and A. Hughes for help with imaging lung tissue slices and J. Woodburn for technical help. We thank M.H. Hastings for comments on the manuscript. The work was supported by research grants to A.L. from GlaxoSmithKline and the Biotechnology and Biological Sciences Research Council, UK (BB/D004357/1, BB/K003119/1 and BB/K003097/1), to D.R. from the Wellcome Trust and the UK National Institute for Health Research Musculoskeletal Biomedical Research Unit Manchester, as well as the US National Institute of Diabetes and Digestive and Kidney Diseases grant P01 DK59820 to F.D. and US National Institutes of Health grants 1RO1HL105834 and 1RO1AI099479 to G.S.W.

Author information

Authors and Affiliations

Authors

Contributions

J.G., D.R., S.F. and A.L. conceived the project. J.G., D.R., G.S.W. and A.L. designed the experiments, and J.G., D.R. and A.L. wrote the paper. J.G. performed all in vivo experiments, oversaw all breeding programs, as well as measures of cellular infiltrates, qPCR gene and cytokine protein expression studies and all statistical analyses; L.I. carried out all adrenalectomies and the associated in vivo studies and downstream analyses; L.M. performed transfection studies; M.P. undertook studies of human bronchiolar epithelial cells; J.M. and G.S.W. undertook all studies of CXCL5-null mice; N.Y. performed ChIP studies; T.P. analyzed DEX-responsive genes in the lung; T.B. and T.H. led pulmonary S. pneumoniae infection studies; F.D. developed the Ccsp-icre mouse model; B.S. and N.B. managed the transgenic animal colony and genotyping; and B.S. undertook the radioactive in situ hybridization studies.

Corresponding authors

Correspondence to David Ray or Andrew Loudon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14 and Supplementary Tables 1–4 (PDF 2169 kb)

CCSP-bmal–/– lung video.

Video showing bioluminescence over time in a lung slice from a CCSP-bmal–/– mouse on a PER2::luc background. The slice was recorded for 3 d. (AVI 18181 kb)

Wild-type lung video.

Video showing bioluminescence over time in a lung slice from a wild-type mouse on a PER2::luc background. The slice was recorded for 3 d. (AVI 18181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gibbs, J., Ince, L., Matthews, L. et al. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat Med 20, 919–926 (2014). https://doi.org/10.1038/nm.3599

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3599

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing