Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

MAP kinase signalling pathways in cancer

Abstract

Cancer can be perceived as a disease of communication between and within cells. The aberrations are pleiotropic, but mitogen-activated protein kinase (MAPK) pathways feature prominently. Here, we discuss recent findings and hypotheses on the role of MAPK pathways in cancer. Cancerous mutations in MAPK pathways are frequently mostly affecting Ras and B-Raf in the extracellular signal-regulated kinase pathway. Stress-activated pathways, such as Jun N-terminal kinase and p38, largely seem to counteract malignant transformation. The balance and integration between these signals may widely vary in different tumours, but are important for the outcome and the sensitivity to drug therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Adler V, Franklin CC, Kraft AS . (1992). Phorbol esters stimulate the phosphorylation of c-Jun but not v-Jun: regulation by the N-terminal delta domain. Proc Natl Acad Sci USA 89: 5341–5345.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beeram M, Patnaik A, Rowinsky EK . (2003). Regulation of c-Raf-1: therapeutic implications. Clin Adv Hematol Oncol 1: 476–481.

    PubMed  Google Scholar 

  • Bloethner S, Chen B, Hemminki K, Muller-Berghaus J, Ugurel S, Schadendorf D et al. (2005). Effect of common B-RAF and N-RAS mutations on global gene expression in melanoma cell lines. Carcinogenesis 26: 1224–1232.

    CAS  PubMed  Google Scholar 

  • Bradham C, McClay DR . (2006). p38 MAPK in development and cancer. Cell Cycle 5: 824–828.

    CAS  PubMed  Google Scholar 

  • Brancho D, Tanaka N, Jaeschke A, Ventura JJ, Kelkar N, Tanaka Y et al. (2003). Mechanism of p38 MAP kinase activation in vivo. Genes Dev 17: 1969–1978.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bubici C, Papa S, Pham CG, Zazzeroni F, Franzoso G . (2004). NF-kappaB and JNK: an intricate affair. Cell Cycle 3: 1524–1529.

    CAS  PubMed  Google Scholar 

  • Bulavin DV, Demidov ON, Saito S, Kauraniemi P, Phillips C, Amundson SA et al. (2002). Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat Genet 31: 210–215.

    CAS  PubMed  Google Scholar 

  • Bulavin DV, Fornace Jr AJ . (2004). p38 MAP kinase's emerging role as a tumor suppressor. Adv Cancer Res 92: 95–118.

    CAS  PubMed  Google Scholar 

  • Bulavin DV, Kovalsky O, Hollander MC, Fornace Jr AJ . (2003). Loss of oncogenic H-ras-induced cell cycle arrest and p38 mitogen-activated protein kinase activation by disruption of Gadd45a. Mol Cell Biol 23: 3859–3871.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buschmann T, Potapova O, Bar-Shira A, Ivanov VN, Fuchs SY, Henderson S et al. (2001). Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress. Mol Cell Biol 21: 2743–2754.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buschmann T, Yin Z, Bhoumik A, Ronai Z . (2000). Amino-terminal-derived JNK fragment alters expression and activity of c-Jun, ATF2, and p53 and increases H2O2-induced cell death. J Biol Chem 275: 16590–16596.

    CAS  PubMed  Google Scholar 

  • Chen J, Fujii K, Zhang L, Roberts T, Fu H . (2001a). Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proc Natl Acad Sci USA 98: 7783–7788.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Gibson TB, Robinson F, Silvestro L, Pearson G, Xu B et al. (2001b). MAP kinases. Chem Rev 101: 2449–2476.

    CAS  PubMed  Google Scholar 

  • Cheng WH, Zheng X, Quimby FR, Roneker CA, Lei XG . (2003). Low levels of glutathione peroxidase 1 activity in selenium-deficient mouse liver affect c-Jun N-terminal kinase activation and p53 phosphorylation on Ser-15 in pro-oxidant-induced aponecrosis. Biochem J 370: 927–934.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N et al. (1999). Essential role for oncogenic Ras in tumour maintenance. Nature 400: 468–472.

    CAS  PubMed  Google Scholar 

  • Chiosis G . (2006). Targeting chaperones in transformed systems--a focus on Hsp90 and cancer. Expert Opin Ther Targets 10: 37–50.

    CAS  PubMed  Google Scholar 

  • Chong H, Vikis HG, Guan KL . (2003). Mechanisms of regulating the Raf kinase family. Cell Signal 15: 463–469.

    CAS  PubMed  Google Scholar 

  • Coleman ML, Marshall CJ, Olson MF . (2004). RAS and RHO GTPases in G1-phase cell-cycle regulation. Nat Rev Mol Cell Biol 5: 355–366.

    CAS  PubMed  Google Scholar 

  • Coles LC, Shaw PE . (2002). PAK1 primes MEK1 for phosphorylation by Raf-1 kinase during cross-cascade activation of the ERK pathway. Oncogene 21: 2236–2244.

    CAS  PubMed  Google Scholar 

  • Cunningham SC, Gallmeier E, Hucl T, Dezentje DA, Calhoun ES, Falco G et al. (2006). Targeted deletion of MKK4 in cancer cells: a detrimental phenotype manifests as decreased experimental metastasis and suggests a counterweight to the evolution of tumor-suppressor loss. Cancer Res 66: 5560–5564.

    CAS  PubMed  Google Scholar 

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. (2002). Mutations of the BRAF gene in human cancer. Nature 417: 949–954.

    CAS  PubMed  Google Scholar 

  • Davis RJ . (2000). Signal transduction by the JNK group of MAP kinases. Cell 103: 239–252.

    CAS  PubMed  Google Scholar 

  • Deacon K, Mistry P, Chernoff J, Blank JL, Patel R . (2003). p38 Mitogen-activated protein kinase mediates cell death and p21-activated kinase mediates cell survival during chemotherapeutic drug-induced mitotic arrest. Mol Biol Cell 14: 2071–2087.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T et al. (1994). JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76: 1025–1037.

    CAS  PubMed  Google Scholar 

  • Dhillon AS, Kolch W . (2002). Untying the regulation of the Raf-1 kinase. Arch Biochem Biophys 404: 3–9.

    CAS  PubMed  Google Scholar 

  • Dong C, Waters SB, Holt KH, Pessin JE . (1996). SOS phosphorylation and disassociation of the Grb2-SOS complex by the ERK and JNK signaling pathways. J Biol Chem 271: 6328–6332.

    Google Scholar 

  • Dougherty MK, Muller J, Ritt DA, Zhou M, Zhou XZ, Copeland TD et al. (2005). Regulation of Raf-1 by direct feedback phosphorylation. Mol Cell 17: 215–224.

    CAS  PubMed  Google Scholar 

  • Douville E, Downward J . (1997). EGF induced SOS phosphorylation in PC12 cells involves P90 RSK-2. Oncogene 15: 373–383.

    CAS  PubMed  Google Scholar 

  • Downward J . (2003). Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3: 11–22.

    CAS  PubMed  Google Scholar 

  • Du W, Prendergast GC . (1999). Geranylgeranylated RhoB mediates suppression of human tumor cell growth by farnesyltransferase inhibitors. Cancer Res 59: 5492–5496.

    CAS  PubMed  Google Scholar 

  • Dumaz N, Hayward R, Martin J, Ogilvie L, Hedley D, Curtin JA et al. (2006). In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res 66: 9483–9491.

    CAS  PubMed  Google Scholar 

  • Dunn KL, Espino PS, Drobic B, He S, Davie JR . (2005). The Ras-MAPK signal transduction pathway, cancer and chromatin remodeling. Biochem Cell Biol 83: 1–14.

    CAS  PubMed  Google Scholar 

  • Eferl R, Ricci R, Kenner L, Zenz R, David JP, Rath M et al. (2003). Liver tumor development. c-Jun antagonizes the proapoptotic activity of p53. Cell 112: 181–192.

    CAS  PubMed  Google Scholar 

  • Ehrenreiter K, Piazzolla D, Velamoor V, Sobczak I, Small JV, Takeda J et al. (2005). Raf-1 regulates Rho signaling and cell migration. J Cell Biol 168: 955–964.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eisen T, Ahmad T, Flaherty KT, Gore M, Kaye S, Marais R et al. (2006). Sorafenib in advanced melanoma: a phase II randomised discontinuation trial analysis. Br J Cancer 95: 581–586.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eliceiri BP, Klemke R, Stromblad S, Cheresh DA . (1998). Integrin alphavbeta3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. J Cell Biol 140: 1255–1263.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellinger-Ziegelbauer H, Kelly K, Siebenlist U . (1999). Cell cycle arrest and reversion of Ras-induced transformation by a conditionally activated form of mitogen-activated protein kinase kinase kinase 3. Mol Cell Biol 19: 3857–3868.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emuss V, Garnett M, Mason C, Marais R . (2005). Mutations of C-RAF are rare in human cancer because C-RAF has a low basal kinase activity compared with B-RAF. Cancer Res 65: 9719–9726.

    CAS  PubMed  Google Scholar 

  • Eves EM, Shapiro P, Naik K, Klein UR, Trakul N, Rosner MR . (2006). Raf kinase inhibitory protein regulates aurora B kinase and the spindle checkpoint. Mol Cell 23: 561–574.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fong CW, Chua MS, McKie AB, Ling SH, Mason V, Li R et al. (2006). Sprouty 2, an inhibitor of mitogen-activated protein kinase signaling, is down-regulated in hepatocellular carcinoma. Cancer Res 66: 2048–2058.

    CAS  PubMed  Google Scholar 

  • Franzoso G, Zazzeroni F, Papa S . (2003). JNK: a killer on a transcriptional leash. Cell Death Differ 10: 13–15.

    CAS  PubMed  Google Scholar 

  • Frost JA, Steen H, Shapiro P, Lewis T, Ahn N, Shaw PE et al. (1997). Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins. EMBO J 16: 6426–6438.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs SY, Adler V, Buschmann T, Yin Z, Wu X, Jones SN et al. (1998). JNK targets p53 ubiquitination and degradation in non-stressed cells. Genes Dev 12: 2658–2663.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galabova-Kovacs G, Kolbus A, Matzen D, Meissl K, Piazzolla D, Rubiolo C et al. (2006). ERK and beyond: insights from B-Raf and Raf-1 conditional knockouts. Cell Cycle 5: 1514–1518.

    CAS  PubMed  Google Scholar 

  • Garnett MJ, Marais R . (2004). Guilty as charged: B-RAF is a human oncogene. Cancer Cell 6: 313–319.

    CAS  PubMed  Google Scholar 

  • Garnett MJ, Rana S, Paterson H, Barford D, Marais R . (2005). Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol Cell 20: 963–969.

    CAS  PubMed  Google Scholar 

  • Giancotti FG, Ruoslahti E . (1999). Integrin signaling. Science 285: 1028–1032.

    CAS  PubMed  Google Scholar 

  • Giehl K . (2005). Oncogenic Ras in tumour progression and metastasis. Biol Chem 386: 193–205.

    CAS  PubMed  Google Scholar 

  • Gollob JA . (2005). Sorafenib: scientific rationales for single-agent and combination therapy in clear-cell renal cell carcinoma. Clin Genitourin Cancer 4: 167–174.

    CAS  PubMed  Google Scholar 

  • Gopalbhai K, Jansen G, Beauregard G, Whiteway M, Dumas F, Wu C et al. (2003). Negative regulation of MAPKK by phosphorylation of a conserved serine residue equivalent to Ser212 of MEK1. J Biol Chem 278: 8118–8125.

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    CAS  PubMed  Google Scholar 

  • Hancock JF . (2003). Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol 4: 373–384.

    CAS  PubMed  Google Scholar 

  • Hancock JF, Parton RG . (2005). Ras plasma membrane signalling platforms. Biochem J 389: 1–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Jacobson K, Schaller MD . (2004). MAP kinases and cell migration. J Cell Sci 117: 4619–4628.

    CAS  PubMed  Google Scholar 

  • Ip YT, Davis RJ . (1998). Signal transduction by the c-Jun N-terminal kinase (JNK) – from inflammation to development. Curr Opin Cell Biol 10: 205–219.

    CAS  PubMed  Google Scholar 

  • Iyoda K, Sasaki Y, Horimoto M, Toyama T, Yakushijin T, Sakakibara M et al. (2003). Involvement of the p38 mitogen-activated protein kinase cascade in hepatocellular carcinoma. Cancer 97: 3017–3026.

    CAS  PubMed  Google Scholar 

  • Javelaud D, Besancon F . (2001). NF-kappa B activation results in rapid inactivation of JNK in TNF alpha-treated Ewing sarcoma cells: a mechanism for the anti-apoptotic effect of NF-kappa B. Oncogene 20: 4365–4372.

    CAS  PubMed  Google Scholar 

  • Johnson R, Spiegelman B, Hanahan D, Wisdom R . (1996). Cellular transformation and malignancy induced by ras require c-jun. Mol Cell Biol 16: 4504–4511.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy NJ, Davis RJ . (2003). Role of JNK in tumor development. Cell Cycle 2: 199–201.

    CAS  PubMed  Google Scholar 

  • Kennedy NJ, Sluss HK, Jones SN, Bar-Sagi D, Flavell RA, Davis RJ . (2003). Suppression of Ras-stimulated transformation by the JNK signal transduction pathway. Genes Dev 17: 629–637.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keyse SM . (2000). Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curr Opin Cell Biol 12: 186–192.

    CAS  PubMed  Google Scholar 

  • Kim HL, Vander Griend DJ, Yang X, Benson DA, Dubauskas Z, Yoshida BA et al. (2001). Mitogen-activated protein kinase kinase 4 metastasis suppressor gene expression is inversely related to histological pattern in advancing human prostatic cancers. Cancer Res 61: 2833–2837.

    CAS  PubMed  Google Scholar 

  • Kohno M, Pouyssegur J . (2006). Targeting the ERK signaling pathway in cancer therapy. Ann Med 38: 200–211.

    CAS  PubMed  Google Scholar 

  • Kolch W . (2005). Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 6: 827–837.

    CAS  PubMed  Google Scholar 

  • Krens SF, Spaink HP, Snaar-Jagalska BE . (2006). Functions of the MAPK family in vertebrate-development. FEBS Lett 580: 4984–4990.

    CAS  PubMed  Google Scholar 

  • Kucharczak J, Simmons MJ, Fan Y, Gelinas C . (2003). To be, or not to be: NF-kappa B is the answer – role of Rel/NF-kappa B in the regulation of apoptosis. Oncogene 22: 8961–8982.

    CAS  PubMed  Google Scholar 

  • Kumar S, Boehm J, Lee JC . (2003). p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov 2: 717–726.

    CAS  PubMed  Google Scholar 

  • Kummer JL, Rao PK, Heidenreich KA . (1997). Apoptosis induced by withdrawal of trophic factors is mediated by p38 mitogen-activated protein kinase. J Biol Chem 272: 20490–20494.

    CAS  PubMed  Google Scholar 

  • Kyriakis JM, Avruch J . (2001). Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81: 807–869.

    CAS  PubMed  Google Scholar 

  • Landi MT, Bauer J, Pfeiffer RM, Elder DE, Hulley B, Minghetti P et al. (2006). MC1R germline variants confer risk for BRAF-mutant melanoma. Science 313: 521–522.

    CAS  PubMed  Google Scholar 

  • Lee ER, Kim JY, Kang YJ, Ahn JY, Kim JH, Kim BW et al. (2006). Interplay between PI3K/Akt and MAPK signaling pathways in DNA-damaging drug-induced apoptosis. Biochim Biophys Acta 1763: 958–968.

    CAS  PubMed  Google Scholar 

  • Li W, Han M, Guan KL . (2000). The leucine-rich repeat protein SUR-8 enhances MAP kinase activation and forms a complex with Ras and Raf. Genes Dev 14: 895–900.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Losa JH, Parada Cobo C, Viniegra JG, Sanchez-Arevalo Lobo VJ, Ramon y Cajal S, Sanchez-Prieto R . (2003). Role of the p38 MAPK pathway in cisplatin-based therapy. Oncogene 22: 3998–4006.

    Google Scholar 

  • Maldonado JL, Fridlyand J, Patel H, Jain AN, Busam K, Kageshita T et al. (2003). Determinants of BRAF mutations in primary melanomas. J Natl Cancer Inst 95: 1878–1890.

    CAS  PubMed  Google Scholar 

  • Marais R, Light Y, Mason C, Paterson H, Olson MF, Marshall CJ . (1998). Requirement of Ras-GTP-Raf complexes for activation of Raf-1 by protein kinase C. Science 280: 109–112.

    CAS  PubMed  Google Scholar 

  • Marais R, Light Y, Paterson HF, Mason CS, Marshall CJ . (1997). Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J Biol Chem 272: 4378–4383.

    CAS  PubMed  Google Scholar 

  • Mavria G, Vercoulen Y, Yeo M, Paterson H, Karasarides M, Marais R et al. (2006). ERK-MAPK signaling opposes Rho-kinase to promote endothelial cell survival and sprouting during angiogenesis. Cancer Cell 9: 33–44.

    CAS  PubMed  Google Scholar 

  • Mason JM, Morrison DJ, Basson MA, Licht JD . (2006). Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol 16: 45–54.

    CAS  PubMed  Google Scholar 

  • Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436: 720–724.

    CAS  PubMed  Google Scholar 

  • Mirza AM, Gysin S, Malek N, Nakayama K, Roberts JM, McMahon M . (2004). Cooperative regulation of the cell division cycle by the protein kinases RAF and AKT. Mol Cell Biol 24: 10868–10881.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyoshi K, Wakioka T, Nishinakamura H, Kamio M, Yang L, Inoue M et al. (2004). The Sprouty-related protein, Spred, inhibits cell motility, metastasis, and Rho-mediated actin reorganization. Oncogene 23: 5567–5576.

    CAS  PubMed  Google Scholar 

  • Molnar A, Theodoras AM, Zon LI, Kyriakis JM . (1997). Cdc42Hs, but not Rac1, inhibits serum-stimulated cell cycle progression at G1/S through a mechanism requiring p38/RK. J Biol Chem 272: 13229–13235.

    CAS  PubMed  Google Scholar 

  • Mor A, Philips MR . (2006). Compartmentalized Ras/MAPK signaling. Annu Rev Immunol 24: 771–800.

    CAS  PubMed  Google Scholar 

  • Morrison DK, Davis RJ . (2003). Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu Rev Cell Dev Biol 19: 91–118.

    CAS  PubMed  Google Scholar 

  • Murphy LO, Blenis J . (2006). MAPK signal specificity: the right place at the right time. Trends Biochem Sci 31: 268–275.

    CAS  PubMed  Google Scholar 

  • Murphy LO, MacKeigan JP, Blenis J . (2004). A network of immediate early gene products propagates subtle differences in mitogen-activated protein kinase signal amplitude and duration. Mol Cell Biol 24: 144–153.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy LO, Smith S, Chen RH, Fingar DC, Blenis J . (2002). Molecular interpretation of ERK signal duration by immediate early gene products. Nat Cell Biol 4: 556–564.

    CAS  PubMed  Google Scholar 

  • Nagasaka T, Sasamoto H, Notohara K, Cullings HM, Takeda M, Kimura K et al. (2004). Colorectal cancer with mutation in BRAF, KRAS, and wild-type with respect to both oncogenes showing different patterns of DNA methylation. J Clin Oncol 22: 4584–4594.

    CAS  PubMed  Google Scholar 

  • Nakayama K, Nakayama N, Davidson B, Katabuchi H, Kurman RJ, Velculescu VE et al. (2006). Homozygous deletion of MKK4 in ovarian serous carcinoma. Cancer Biol Ther 5: 630–634.

    CAS  PubMed  Google Scholar 

  • Nguyen A, Burack WR, Stock JL, Kortum R, Chaika OV, Afkarian M et al. (2002). Kinase suppressor of Ras (KSR) is a scaffold which facilitates mitogen-activated protein kinase activation in vivo. Mol Cell Biol 22: 3035–3045.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill E, Kolch W . (2004). Conferring specificity on the ubiquitous Raf/MEK signalling pathway. Br J Cancer 90: 283–288.

    PubMed  PubMed Central  Google Scholar 

  • Olson JM, Hallahan AR . (2004). p38 MAP kinase: a convergence point in cancer therapy. Trends Mol Med 10: 125–129.

    CAS  PubMed  Google Scholar 

  • Olson MF, Paterson HF, Marshall CJ . (1998). Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1. Nature 394: 295–299.

    CAS  PubMed  Google Scholar 

  • Orlowski RZ, Baldwin Jr AS . (2002). NF-kappaB as a therapeutic target in cancer. Trends Mol Med 8: 385–389.

    CAS  PubMed  Google Scholar 

  • Orton RJ, Sturm OE, Vyshemirsky V, Calder M, Gilbert DR, Kolch W . (2005). Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem J 392: 249–261.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petti C, Molla A, Vegetti C, Ferrone S, Anichini A, Sensi M . (2006). Coexpression of NRASQ61R and BRAFV600E in human melanoma cells activates senescence and increases susceptibility to cell-mediated cytotoxicity. Cancer Res 66: 6503–6511.

    CAS  PubMed  Google Scholar 

  • Philips MR . (2005). Compartmentalized signalling of Ras. Biochem Soc Trans 33: 657–661.

    CAS  PubMed  Google Scholar 

  • Piazzolla D, Meissl K, Kucerova L, Rubiolo C, Baccarini M . (2005). Raf-1 sets the threshold of Fas sensitivity by modulating Rok-alpha signaling. J Cell Biol 171: 1013–1022.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pollock CB, Shirasawa S, Sasazuki T, Kolch W, Dhillon AS . (2005). Oncogenic K-RAS is required to maintain changes in cytoskeletal organization, adhesion, and motility in colon cancer cells. Cancer Res 65: 1244–1250.

    CAS  PubMed  Google Scholar 

  • Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM et al. (2003). High frequency of BRAF mutations in nevi. Nat Genet 33: 19–20.

    CAS  PubMed  Google Scholar 

  • Pruitt K, Pruitt WM, Bilter GK, Westwick JK, Der CJ . (2002). Raf-independent deregulation of p38 and JNK mitogen-activated protein kinases are critical for Ras transformation. J Biol Chem 277: 31808–31817.

    CAS  PubMed  Google Scholar 

  • Reddy KB, Nabha SM, Atanaskova N . (2003). Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev 22: 395–403.

    CAS  PubMed  Google Scholar 

  • Richard DE, Berra E, Gothie E, Roux D, Pouyssegur J . (1999). p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J Biol Chem 274: 32631–32637.

    CAS  PubMed  Google Scholar 

  • Rinehart J, Adjei AA, Lorusso PM, Waterhouse D, Hecht JR, Natale RB et al. (2004). Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol 22: 4456–4462.

    CAS  PubMed  Google Scholar 

  • Robinson VL, Hickson JA, Vander Griend DJ, Dubauskas Z, Rinker-Schaeffer CW . (2003). MKK4 and metastasis suppression: a marriage of signal transduction and metastasis research. Clin Exp Metastasis 20: 25–30.

    CAS  PubMed  Google Scholar 

  • Rodriguez-Viciana P, Tetsu O, Tidyman WE, Estep AL, Conger BA, Cruz MS et al. (2006). Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science 311: 1287–1290.

    CAS  PubMed  Google Scholar 

  • Rushworth LK, Hindley AD, O’Neill E, Kolch W . (2006). Regulation and role of Raf-1/B-Raf heterodimerization. Mol Cell Biol 26: 2262–2272.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sahai E, Marshall CJ . (2002). RHO-GTPases and cancer. Nat Rev Cancer 2: 133–142.

    PubMed  Google Scholar 

  • Sahai E, Olson MF, Marshall CJ . (2001). Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO J 20: 755–766.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samowitz WS, Sweeney C, Herrick J, Albertsen H, Levin TR, Murtaugh MA et al. (2005). Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res 65: 6063–6069.

    CAS  PubMed  Google Scholar 

  • Schaeffer HJ, Weber MJ . (1999). Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 19: 2435–2444.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber M, Kolbus A, Piu F, Szabowski A, Mohle-Steinlein U, Tian J et al. (1999). Control of cell cycle progression by c-Jun is p53 dependent. Genes Dev 13: 607–619.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuierer MM, Bataille F, Hagan S, Kolch W, Bosserhoff AK . (2004). Reduction in Raf kinase inhibitor protein expression is associated with increased Ras-extracellular signal-regulated kinase signaling in melanoma cell lines. Cancer Res 64: 5186–5192.

    CAS  PubMed  Google Scholar 

  • Schutte J, Minna JD, Birrer MJ . (1989). Deregulated expression of human c-jun transforms primary rat embryo cells in cooperation with an activated c-Ha-ras gene and transforms rat-1a cells as a single gene. Proc Natl Acad Sci USA 86: 2257–2261.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sebolt-Leopold JS, Herrera R . (2004). Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 4: 937–947.

    CAS  PubMed  Google Scholar 

  • Sewing A, Wiseman B, Lloyd AC, Land H . (1997). High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1. Mol Cell Biol 17: 5588–5597.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp S, Workman P . (2006). Inhibitors of the HSP90 molecular chaperone: current status. Adv Cancer Res 95: 323–348.

    CAS  PubMed  Google Scholar 

  • She QB, Bode AM, Ma WY, Chen NY, Dong Z . (2001). Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase. Cancer Res 61: 1604–1610.

    CAS  PubMed  Google Scholar 

  • She QB, Ma WY, Dong Z . (2002). Role of MAP kinases in UVB-induced phosphorylation of p53 at serine 20. Oncogene 21: 1580–1589.

    CAS  PubMed  Google Scholar 

  • Smeal T, Binetruy B, Mercola DA, Birrer M, Karin M . (1991). Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature 354: 494–496.

    CAS  PubMed  Google Scholar 

  • Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A et al. (2006). BRAF mutation predicts sensitivity to MEK inhibition. Nature 439: 358–362.

    CAS  PubMed  Google Scholar 

  • Spendlove HE, Damato BE, Humphreys J, Barker KT, Hiscott PS, Houlston RS . (2004). BRAF mutations are detectable in conjunctival but not uveal melanomas. Melanoma Res 14: 449–452.

    CAS  PubMed  Google Scholar 

  • Tang F, Tang G, Xiang J, Dai Q, Rosner MR, Lin A . (2002). The absence of NF-kappaB-mediated inhibition of c-Jun N-terminal kinase activation contributes to tumor necrosis factor alpha-induced apoptosis. Mol Cell Biol 22: 8571–8579.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Therrien M, Michaud NR, Rubin GM, Morrison DK . (1996). KSR modulates signal propagation within the MAPK cascade. Genes Dev 10: 2684–2695.

    CAS  PubMed  Google Scholar 

  • Timofeev O, Lee TY, Bulavin DV . (2005). A subtle change in p38 MAPK activity is sufficient to suppress in vivo tumorigenesis. Cell Cycle 4: 118–120.

    CAS  PubMed  Google Scholar 

  • To MD, Perez-Losada J, Mao JH, Hsu J, Jacks T, Balmain A . (2006). A functional switch from lung cancer resistance to susceptibility at the Pas1 locus in Kras2LA2 mice. Nat Genet 38: 926–930.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torii S, Yamamoto T, Tsuchiya Y, Nishida E . (2006). ERK MAP kinase in G cell cycle progression and cancer. Cancer Sci 97: 697–702.

    CAS  PubMed  Google Scholar 

  • Tsavachidou D, Coleman ML, Athanasiadis G, Li S, Licht JD, Olson MF et al. (2004). SPRY2 is an inhibitor of the ras/extracellular signal-regulated kinase pathway in melanocytes and melanoma cells with wild-type BRAF but not with the V599E mutant. Cancer Res 64: 5556–5559.

    CAS  PubMed  Google Scholar 

  • Tsujita E, Taketomi A, Gion T, Kuroda Y, Endo K, Watanabe A et al. (2005). Suppressed MKP-1 is an independent predictor of outcome in patients with hepatocellular carcinoma. Oncology 69: 342–347.

    CAS  PubMed  Google Scholar 

  • Vasilevskaya I, O’Dwyer PJ . (2003). Role of Jun and Jun kinase in resistance of cancer cells to therapy. Drug Resist Updat 6: 147–156.

    CAS  PubMed  Google Scholar 

  • Vial E, Sahai E, Marshall CJ . (2003). ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility. Cancer Cell 4: 67–79.

    CAS  PubMed  Google Scholar 

  • Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM et al. (2004). Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116: 855–867.

    CAS  PubMed  Google Scholar 

  • Wellbrock C, Karasarides M, Marais R . (2004). The RAF proteins take centre stage. Nat Rev Mol Cell Biol 5: 875–885.

    CAS  PubMed  Google Scholar 

  • Weston CR, Davis RJ . (2002). The JNK signal transduction pathway. Curr Opin Genet Dev 12: 14–21.

    CAS  PubMed  Google Scholar 

  • Wilhelm S, Chien DS . (2002). BAY 43-9006: preclinical data. Curr Pharm Des 8: 2255–2257.

    CAS  PubMed  Google Scholar 

  • Woods D, Parry D, Cherwinski H, Bosch E, Lees E, McMahon M . (1997). Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol Cell Biol 17: 5598–5611.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu GS . (2004). The functional interactions between the p53 and MAPK signaling pathways. Cancer Biol Ther 3: 156–161.

    CAS  PubMed  Google Scholar 

  • Wu X, Noh SJ, Zhou G, Dixon JE, Guan KL . (1996). Selective activation of MEK1 but not MEK2 by A-Raf from epidermal growth factor-stimulated Hela cells. J Biol Chem 271: 3265–3271.

    CAS  PubMed  Google Scholar 

  • Xiang X, Zang M, Waelde CA, Wen R, Luo Z . (2002). Phosphorylation of 338SSYY341 regulates specific interaction between Raf-1 and MEK1. J Biol Chem 277: 44996–45003.

    CAS  PubMed  Google Scholar 

  • Yamada SD, Hickson JA, Hrobowski Y, Vander Griend DJ, Benson D, Montag A et al. (2002). Mitogen-activated protein kinase kinase 4 (MKK4) acts as a metastasis suppressor gene in human ovarian carcinoma. Cancer Res 62: 6717–6723.

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Ebisuya M, Ashida F, Okamoto K, Yonehara S, Nishida E . (2006). Continuous ERK activation downregulates antiproliferative genes throughout G1 phase to allow cell-cycle progression. Curr Biol 16: 1171–1182.

    CAS  PubMed  Google Scholar 

  • Yeung K, Seitz T, Li S, Janosch P, McFerran B, Kaiser C et al. (1999). Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 401: 173–177.

    CAS  PubMed  Google Scholar 

  • Yoon S, Seger R . (2006). The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24: 21–44.

    CAS  PubMed  Google Scholar 

  • Zarubin T, Han J . (2005). Activation and signaling of the p38 MAP kinase pathway. Cell Res 15: 11–18.

    CAS  PubMed  Google Scholar 

  • Zebisch A, Staber PB, Delavar A, Bodner C, Hiden K, Fischereder K et al. (2006). Two transforming C-RAF germ-line mutations identified in patients with therapy-related acute myeloid leukemia. Cancer Res 66: 3401–3408.

    CAS  PubMed  Google Scholar 

  • Zhu K, Hamilton AD, Sebti SM . (2003). Farnesyltransferase inhibitors as anticancer agents: current status. Curr Opin Investig Drugs 4: 1428–1435.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Cancer Research UK and the European Union FP6 Project ‘Computational Systems Biology of Cell Signalling’ (LSHG-CT-2004-512060) for support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A S Dhillon or W Kolch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhillon, A., Hagan, S., Rath, O. et al. MAP kinase signalling pathways in cancer. Oncogene 26, 3279–3290 (2007). https://doi.org/10.1038/sj.onc.1210421

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210421

Keywords

This article is cited by

Search

Quick links