Semin Respir Crit Care Med 2013; 34(01): 110-123
DOI: 10.1055/s-0033-1333573
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Underlying Host Risk Factors for Nontuberculous Mycobacterial Lung Disease

Edward D. Chan
1   Denver Veterans Affairs Medical Center, Denver, Colorado
2   Department of Medicine, National Jewish Health, Denver, Colorado
3   Program in Cell Biology, National Jewish Health, Denver, Colorado
4   Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Denver, Colorado
,
Michael D. Iseman
2   Department of Medicine, National Jewish Health, Denver, Colorado
4   Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Denver, Colorado
5   Division of Infectious Diseases, University of Colorado Denver Anschutz Medical Campus, Denver, Colorado
› Author Affiliations
Further Information

Publication History

Publication Date:
04 March 2013 (online)

Abstract

Nontuberculous mycobacteria (NTM) are environmental microbes that cause a variety of human diseases, particularly chronic lung infections. Despite the fact that NTM are widespread in the environment, relatively few people develop NTM lung disease, suggesting intrinsic vulnerability in some individuals. This paper reviews the evidence that underlying disorders predispose to NTM lung disease, in particular primary conditions that result in bronchiectasis, chronic obstructive pulmonary disease, α-1-antitrypsin anomalies, pneumoconiosis, pulmonary alveolar proteinosis, and frank immunosuppressive states such as that associated with the use of anti–tumor necrosis factor-α biologics, posttransplantation immunosuppression, and HIV infection. Over the past several decades, NTM lung disease has been increasingly identified in postmenopausal women with slender body habitus. Thus we will also review the clinical and experimental evidence which supports the observation that such individuals are predisposed to NTM lung disease.

 
  • References

  • 1 Glassroth J. Pulmonary disease due to nontuberculous mycobacteria. Chest 2008; 133 (1) 243-251
  • 2 Okumura M, Iwai K, Ogata H , et al. Clinical factors on cavitary and nodular bronchiectatic types in pulmonary Mycobacterium avium complex disease. Intern Med 2008; 47 (16) 1465-1472
  • 3 Marras TK, Daley CL. Epidemiology of human pulmonary infection with nontuberculous mycobacteria. Clin Chest Med 2002; 23 (3) 553-567
  • 4 Cassidy PM, Hedberg K, Saulson A, McNelly E, Winthrop KL. Nontuberculous mycobacterial disease prevalence and risk factors: a changing epidemiology. Clin Infect Dis 2009; 49 (12) e124-e129
  • 5 Griffith DE, Stout JE. It is better to light a candle ... than to repeat the opinions of experts. Am J Respir Crit Care Med 2010; 182 (7) 865-866
  • 6 Prevots DR, Shaw PA, Strickland D , et al. Nontuberculous mycobacterial lung disease prevalence at four integrated health care delivery systems. Am J Respir Crit Care Med 2010; 182 (7) 970-976
  • 7 Winthrop KL, McNelley E, Kendall B , et al. Pulmonary nontuberculous mycobacterial disease prevalence and clinical features: an emerging public health disease. Am J Respir Crit Care Med 2010; 182 (7) 977-982
  • 8 Iseman MD, Marras TK. The importance of nontuberculous mycobacterial lung disease. Am J Respir Crit Care Med 2008; 178 (10) 999-1000
  • 9 van Ingen J, Hoefsloot W, Dekhuijzen PN, Boeree MJ, van Soolingen D. The changing pattern of clinical Mycobacterium avium isolation in the Netherlands. Int J Tuberc Lung Dis 2010; 14 (9) 1176-1180
  • 10 Kasperbauer SH, Daley CL. Diagnosis and treatment of infections due to Mycobacterium avium complex. Semin Respir Crit Care Med 2008; 29 (5) 569-576
  • 11 Brown-Elliott BA, Wallace RJ. Infections caused by nontuberculous mycobacteria. In: Mandell GL, Bennett JE, Dolin R, , eds. Principles and Practice of Infectious Diseases. Philadelphia, PA: Elsevier; 2005: 2909-2916
  • 12 Koh WJ, Jeon K, Lee NY , et al. Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am J Respir Crit Care Med 2011; 183 (3) 405-410
  • 13 Marusić A, Katalinić-Janković V, Popović-Grle S , et al. Mycobacterium xenopi pulmonary disease—epidemiology and clinical features in non-immunocompromised patients. J Infect 2009; 58 (2) 108-112
  • 14 Doucette K, Fishman JA. Nontuberculous mycobacterial infection in hematopoietic stem cell and solid organ transplant recipients. Clin Infect Dis 2004; 38 (10) 1428-1439
  • 15 Maimon N, Brunton J, Chan AK, Marras TK. Fatal pulmonary Mycobacterium xenopi in a patient with rheumatoid arthritis receiving etanercept. Thorax 2007; 62 (8) 739-740
  • 16 Marie I, Heliot P, Roussel F, Hervé F, Muir JF, Levesque H. Fatal Mycobacterium peregrinum pneumonia in refractory polymyositis treated with infliximab. Rheumatology (Oxford) 2005; 44 (9) 1201-1202
  • 17 Marras TK, Daley CL. A systematic review of the clinical significance of pulmonary Mycobacterium kansasii isolates in HIV infection. J Acquir Immune Defic Syndr 2004; 36 (4) 883-889
  • 18 Okubo H, Iwamoto M, Yoshio T , et al. Rapidly aggravated Mycobacterium avium infection in a patient with rheumatoid arthritis treated with infliximab. Mod Rheumatol 2005; 15 (1) 62-64
  • 19 Smith MB, Molina CP, Schnadig VJ, Boyars MC, Aronson JF. Pathologic features of Mycobacterium kansasii infection in patients with acquired immunodeficiency syndrome. Arch Pathol Lab Med 2003; 127 (5) 554-560
  • 20 van Ingen J, Boeree M, Janssen M , et al. Pulmonary Mycobacterium szulgai infection and treatment in a patient receiving anti-tumor necrosis factor therapy. Nat Clin Pract Rheumatol 2007; 3 (7) 414-419
  • 21 Chan ED, Kaminska AM, Gill W , et al. Alpha-1-antitrypsin (AAT) anomalies are associated with lung disease due to rapidly growing mycobacteria and AAT inhibits Mycobacterium abscessus infection of macrophages. Scand J Infect Dis 2007; 39 (8) 690-696
  • 22 Iseman MD. The Theodore E. Woodward Award. Mycobacterium avium and slender women: an unrequited affair. Trans Am Clin Climatol Assoc 1998; 109: 199-202 , discussion 203–204
  • 23 Kim RD, Greenberg DE, Ehrmantraut ME , et al. Pulmonary nontuberculous mycobacterial disease: prospective study of a distinct preexisting syndrome. Am J Respir Crit Care Med 2008; 178 (10) 1066-1074
  • 24 Tasaka S, Hasegawa N, Nishimura T , et al. Elevated serum adiponectin level in patients with Mycobacterium avium-intracellulare complex pulmonary disease. Respiration 2010; 79 (5) 383-387
  • 25 Tomii K, Iwata T, Oida K , et al. A probable case of adult Williams-Campbell syndrome incidentally detected by an episode of atypical mycobacterial infection [in Japanese]. Nihon Kyobu Shikkan Gakkai Zasshi 1989; 27 (4) 518-522
  • 26 Uji M, Matsushita H, Watanabe T, Suzumura T, Yamada M. A case of primary Sjögren's syndrome presenting with middle lobe syndrome complicated by nontuberculous mycobacteriosis [in Japanese]. Nihon Kokyuki Gakkai Zasshi 2008; 46 (1) 55-59
  • 27 Brownell I, Ramírez-Valle F, Sanchez M, Prystowsky S. Evidence for mycobacteria in sarcoidosis. Am J Respir Cell Mol Biol 2011; 45 (5) 899-905
  • 28 Noone PG, Leigh MW, Sannuti A , et al. Primary ciliary dyskinesia: diagnostic and phenotypic features. Am J Respir Crit Care Med 2004; 169 (4) 459-467
  • 29 Chmura K, Chan ED, Noone PG , et al. A middle-aged woman with recurrent respiratory infections. Respiration 2005; 72 (4) 427-430
  • 30 Lewis Jr AG, Dunbar FP, Lasche EM , et al. Chronic pulmonary disease due to atypical mycobacterial infections. Am Rev Respir Dis 1959; 80: 188-199
  • 31 Jones VF, Eid NS, Franco SM, Badgett JT, Buchino JJ. Familial congenital bronchiectasis: Williams-Campbell syndrome. Pediatr Pulmonol 1993; 16 (4) 263-267
  • 32 George J, Jain R, Tariq SM. CT bronchoscopy in the diagnosis of Williams-Campbell syndrome. Respirology 2006; 11 (1) 117-119
  • 33 Woodring JH, Howard II RS, Rehm SR. Congenital tracheobronchomegaly (Mounier-Kuhn syndrome): a report of 10 cases and review of the literature. J Thorac Imaging 1991; 6 (2) 1-10
  • 34 Abdallah EG, Ashton RW. Mounier-Kuhn syndrome: overcoming a lack of recognition. South Med J 2008; 101 (1) 14-15
  • 35 Christensen EE, Dietz GW, Ahn CH , et al. Initial roentgenographic manifestations of pulmonary Mycobacterium tuberculosis, M. kansasii, and M. intracellularis infections. Chest 1981; 80 (2) 132-136
  • 36 Rosenzweig DY. Pulmonary mycobacterial infections due to Mycobacterium intracellulare-avium complex: clinical features and course in 100 consecutive cases. Chest 1979; 75 (2) 115-119
  • 37 Chan ED, Iseman MD. Potential association between calcified thoracic lymphadenopathy due to previous Histoplasma capsulatum infection and pulmonary Mycobacterium avium complex disease. South Med J 1999; 92 (6) 572-576
  • 38 Andréjak C, Nielsen R, Thomsen VO, Duhaut P, Sørensen HT, Thomsen RW. Chronic respiratory disease, inhaled corticosteroids and risk of non-tuberculous mycobacteriosis. Thorax 2012; Jul 10. [ Epub ahead of print]
  • 39 Huang C-T, Tsai Y-J, Wu H-D , et al. Impact of non-tuberculous mycobacteria on pulmonary function decline in chronic obstructive pulmonary disease. Int J Tuberc Lung Dis 2012; 16 (4) 539-545
  • 40 Chan ED, Feldman NE, Chmura K , et al. Do mutations of the alpha-1-antitrypsin gene predispose to non-tuberculous mycobacterial infection? [abstract]. Am J Respir Crit Care Med 2004; 169: A132
  • 41 de Serres FJ. Worldwide racial and ethnic distribution of alpha1-antitrypsin deficiency: summary of an analysis of published genetic epidemiologic surveys. Chest 2002; 122 (5) 1818-1829
  • 42 Dahl M, Tybjaerg-Hansen A, Lange P, Vestbo J, Nordestgaard BG. Change in lung function and morbidity from chronic obstructive pulmonary disease in alpha1-antitrypsin MZ heterozygotes: a longitudinal study of the general population. Ann Intern Med 2002; 136 (4) 270-279
  • 43 Shin MS, Ho K-J. Bronchiectasis in patients with alpha 1-antitrypsin deficiency: a rare occurrence?. Chest 1993; 104 (5) 1384-1386
  • 44 Tomashefski Jr JF, Crystal RG, Wiedemann HP, Mascha E, Stoller JK. Alpha 1-Antitrypsin Deficiency Registry Study Group. The bronchopulmonary pathology of alpha-1 antitrypsin (AAT) deficiency: findings of the Death Review Committee of the national registry for individuals with Severe Deficiency of Alpha-1 Antitrypsin. Hum Pathol 2004; 35 (12) 1452-1461
  • 45 Parr DG, Guest PG, Reynolds JH, Dowson LJ, Stockley RA. Prevalence and impact of bronchiectasis in alpha1-antitrypsin deficiency. Am J Respir Crit Care Med 2007; 176 (12) 1215-1221
  • 46 Martínez-García MA, Soler-Cataluña JJ, Donat Sanz Y , et al. Factors associated with bronchiectasis in patients with COPD. Chest 2011; 140 (5) 1130-1137
  • 47 Mulgrew AT, Taggart CC, Lawless MW , et al. Z alpha1-antitrypsin polymerizes in the lung and acts as a neutrophil chemoattractant. Chest 2004; 125 (5) 1952-1957
  • 48 Cuvelier A, Muir JF, Hellot MF , et al. Distribution of alpha(1)-antitrypsin alleles in patients with bronchiectasis. Chest 2000; 117 (2) 415-419
  • 49 Lieberman J. Augmentation therapy reduces frequency of lung infections in antitrypsin deficiency: a new hypothesis with supporting data. Chest 2000; 118 (5) 1480-1485
  • 50 Cantin AM, Woods DE. Aerosolized prolastin suppresses bacterial proliferation in a model of chronic Pseudomonas aeruginosa lung infection. Am J Respir Crit Care Med 1999; 160 (4) 1130-1135
  • 51 Corbett EL, Hay M, Churchyard GJ , et al. Mycobacterium kansasii and M. scrofulaceum isolates from HIV-negative South African gold miners: incidence, clinical significance and radiology. Int J Tuberc Lung Dis 1999; 3 (6) 501-507
  • 52 Sonnenberg P, Murray J, Glynn JR, Thomas RG, Godfrey-Faussett P, Shearer S. Risk factors for pulmonary disease due to culture-positive M. tuberculosis or nontuberculous mycobacteria in South African gold miners. Eur Respir J 2000; 15 (2) 291-296
  • 53 Kim YM, Kim M, Kim SK , et al. Mycobacterial infections in coal workers' pneumoconiosis patients in South Korea. Scand J Infect Dis 2009; 41 (9) 656-662
  • 54 Chan ED, King TE. Clinical manifestations and etiology of pulmonary alveolar proteinosis in adults. In: Flaherty KR, , ed. UpToDate. Waltham, MA: UpToDate; 2013
  • 55 Witty LA, Tapson VF, Piantadosi CA. Isolation of mycobacteria in patients with pulmonary alveolar proteinosis. Medicine (Baltimore) 1994; 73 (2) 103-109
  • 56 Ramirez J, Savard EV, Hawkins JE. Biological effect of pulmonary washings from cases of alveolar proteinosis. Am Rev Respir Dis 1966; 94 (2) 244-246
  • 57 Abdul Rahman JA, Moodley YP, Phillips MJ. Pulmonary alveolar proteinosis associated with psoriasis and complicated by mycobacterial infection: successful treatment with granulocyte-macrophage colony stimulating factor after a partial response to whole lung lavage. Respirology 2004; 9 (3) 419-422
  • 58 Bakhos R, Gattuso P, Arcot C, Reddy VB. Pulmonary alveolar proteinosis: an unusual association with Mycobacterium avium-intracellulare infection and lymphocytic interstitial pneumonia. South Med J 1996; 89 (8) 801-802
  • 59 Bedrossian CW, Luna MA, Conklin RH, Miller WC. Alveolar proteinosis as a consequence of immunosuppression. A hypothesis based on clinical and pathologic observations. Hum Pathol 1980; 11 (5, Suppl) 527-535
  • 60 Carnovale R, Zornoza J, Goldman AM, Luna M. Pulmonary alveolar proteinosis: its association with hematologic malignancy and lymphoma. Radiology 1977; 122 (2) 303-306
  • 61 Goldschmidt N, Nusair S, Gural A, Amir G, Izhar U, Laxer U. Disseminated Mycobacterium kansasii infection with pulmonary alveolar proteinosis in a patient with chronic myelogenous leukemia. Am J Hematol 2003; 74 (3) 221-223
  • 62 Prakash UB, Barham SS, Carpenter HA, Dines DE, Marsh HM. Pulmonary alveolar phospholipoproteinosis: experience with 34 cases and a review. Mayo Clin Proc 1987; 62 (6) 499-518
  • 63 Ramirez J. Pulmonary alveolar proteinosis. Treatment by massive bronchopulmonary lavage. Arch Intern Med 1967; 119 (2) 147-156
  • 64 Green D, Dighe P, Ali NO, Katele GV. Pulmonary alveolar proteinosis complicating chronic myelogenous leukemia. Cancer 1980; 46 (8) 1763-1766
  • 65 Watanabe K, Sueishi K, Tanaka K , et al. Pulmonary alveolar proteinosis and disseminated atypical mycobacteriosis in a patient with busulfan lung. Acta Pathol Jpn 1990; 40 (1) 63-66
  • 66 Wallis RS, Schluger NW. Pulmonary infectious complications of tumor necrosis factor blockade. Infect Dis Clin North Am 2010; 24 (3) 681-692
  • 67 Tubach F, Salmon D, Ravaud P , et al; Research Axed on Tolerance of Biotherapies Group. Risk of tuberculosis is higher with anti-tumor necrosis factor monoclonal antibody therapy than with soluble tumor necrosis factor receptor therapy: The three-year prospective French Research Axed on Tolerance of Biotherapies registry. Arthritis Rheum 2009; 60 (7) 1884-1894
  • 68 Wallis RS. Mathematical modeling of the cause of tuberculosis during tumor necrosis factor blockade. Arthritis Rheum 2008; 58 (4) 947-952
  • 69 Wallis RS, Broder M, Wong J, Beenhouwer D. Granulomatous infections due to tumor necrosis factor blockade: correction. Clin Infect Dis 2004; 39 (8) 1254-1255
  • 70 Wallis RS, Broder MS, Wong JY, Hanson ME, Beenhouwer DO. Granulomatous infectious diseases associated with tumor necrosis factor antagonists. Clin Infect Dis 2004; 38 (9) 1261-1265
  • 71 Winthrop K, Baxter R, Liu L , et al. Mycobacterial diseases and antitumour necrosis factor therapy in USA. Ann Rheum Dis 2013; 72 (1) 37-42
  • 72 Gardam MA, Keystone EC, Menzies R , et al. Anti-tumour necrosis factor agents and tuberculosis risk: mechanisms of action and clinical management. Lancet Infect Dis 2003; 3 (3) 148-155
  • 73 Salvana EM, Cooper GS, Salata RA. Mycobacterium other than tuberculosis (MOTT) infection: an emerging disease in infliximab-treated patients. J Infect 2007; 55 (6) 484-487
  • 74 Winthrop KL, Daley CL, Griffith D. Nontuberuclous mycobacterial disease: updated diagnostic criteria for an under-recognized infectious complication of anti-tumor necrosis factor therapy. Nat Clin Pract Rheumatol 2007; 3 (10) E1
  • 75 Keystone E, Heijde D, Mason Jr D , et al. Certolizumab pegol plus methotrexate is significantly more effective than placebo plus methotrexate in active rheumatoid arthritis: findings of a fifty-two-week, phase III, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Arthritis Rheum 2008; 58 (11) 3319-3329
  • 76 Smolen J, Landewé RB, Mease P , et al. Efficacy and safety of certolizumab pegol plus methotrexate in active rheumatoid arthritis: the RAPID 2 study: a randomised controlled trial. Ann Rheum Dis 2009; 68 (6) 797-804
  • 77 Bruns H, Meinken C, Schauenberg P , et al. Anti-TNF immunotherapy reduces CD8+ T cell-mediated antimicrobial activity against Mycobacterium tuberculosis in humans. J Clin Invest 2009; 119 (5) 1167-1177
  • 78 Saliu OY, Sofer C, Stein DS, Schwander SK, Wallis RS. Tumor-necrosis-factor blockers: differential effects on mycobacterial immunity. J Infect Dis 2006; 194 (4) 486-492
  • 79 Bergstrom L, Yocum DE, Ampel NM , et al. Increased risk of coccidioidomycosis in patients treated with tumor necrosis factor alpha antagonists. Arthritis Rheum 2004; 50 (6) 1959-1966
  • 80 Mufti AH, Toye BW, Mckendry RR, Angel JB. Mycobacterium abscessus infection after use of tumor necrosis factor alpha inhibitor therapy: case report and review of infectious complications associated with tumor necrosis factor alpha inhibitor use. Diagn Microbiol Infect Dis 2005; 53 (3) 233-238
  • 81 Boulman N, Rozenbaum M, Slobodin G, Rosner I. Mycobacterium fortuitum infection complicating infliximab therapy in rheumatoid arthritis. Clin Exp Rheumatol 2006; 24 (6) 723
  • 82 Winthrop KL, Chang E, Yamashita S, Iademarco MF, LoBue PA. Nontuberculous mycobacteria infections and anti-tumor necrosis factor-alpha therapy. Emerg Infect Dis 2009; 15 (10) 1556-1561
  • 83 Winthrop KL, Yamashita S, Beekmann SE, Polgreen PM. Infectious Diseases Society of America Emerging Infections Network. Mycobacterial and other serious infections in patients receiving anti-tumor necrosis factor and other newly approved biologic therapies: case finding through the Emerging Infections Network. Clin Infect Dis 2008; 46 (11) 1738-1740
  • 84 Griffith DE, Aksamit T, Brown-Elliott BA , et al; ATS Mycobacterial Diseases Subcommittee; American Thoracic Society; Infectious Disease Society of America. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 2007; 175 (4) 367-416
  • 85 Bai X, Wilson SE, Chmura K, Feldman NE, Chan ED. Morphometric analysis of Th(1) and Th(2) cytokine expression in human pulmonary tuberculosis. Tuberculosis (Edinb) 2004; 84 (6) 375-385
  • 86 Maglione PJ, Xu J, Chan J. B cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challenge with Mycobacterium tuberculosis. J Immunol 2007; 178 (11) 7222-7234
  • 87 Lutt JR, Pisculli ML, Weinblatt ME, Deodhar A, Winthrop KL. Severe nontuberculous mycobacterial infection in 2 patients receiving rituximab for refractory myositis. J Rheumatol 2008; 35 (8) 1683-1685
  • 88 Daley CL, Griffith DE. Pulmonary disease caused by rapidly growing mycobacteria. Clin Chest Med 2002; 23 (3) 623-632 , vii
  • 89 Field SK, Cowie RL. Lung disease due to the more common nontuberculous mycobacteria. Chest 2006; 129 (6) 1653-1672
  • 90 Griffith DE, Girard WM, Wallace Jr RJ. Clinical features of pulmonary disease caused by rapidly growing mycobacteria: an analysis of 154 patients. Am Rev Respir Dis 1993; 147 (5) 1271-1278
  • 91 Iseman MD, Buschman DL, Ackerson LM. Pectus excavatum and scoliosis. Thoracic anomalies associated with pulmonary disease caused by Mycobacterium avium complex. Am Rev Respir Dis 1991; 144 (4) 914-916
  • 92 Prince DS, Peterson DD, Steiner RM , et al. Infection with Mycobacterium avium complex in patients without predisposing conditions. N Engl J Med 1989; 321 (13) 863-868
  • 93 Reich JM, Johnson RE. Mycobacterium avium complex pulmonary disease presenting as an isolated lingular or middle lobe pattern: the Lady Windermere syndrome. Chest 1992; 101 (6) 1605-1609
  • 94 Dhillon SS, Watanakunakorn C. Lady Windermere syndrome: middle lobe bronchiectasis and Mycobacterium avium complex infection due to voluntary cough suppression. Clin Infect Dis 2000; 30 (3) 572-575
  • 95 Chan ED, Iseman MD. Slender, older women appear to be more susceptible to nontuberculous mycobacterial lung disease. Gend Med 2010; 7 (1) 5-18
  • 96 Chalermskulrat W, Gilbey JG, Donohue JF. Nontuberculous mycobacteria in women, young and old. Clin Chest Med 2002; 23 (3) 675-686
  • 97 Tsuyuguchi K, Suzuki K, Matsumoto H, Tanaka E, Amitani R, Kuze F. Effect of oestrogen on Mycobacterium avium complex pulmonary infection in mice. Clin Exp Immunol 2001; 123 (3) 428-434
  • 98 Hayashi M, Takayanagi N, Kanauchi T, Miyahara Y, Yanagisawa T, Sugita Y. Prognostic factors of 634 HIV-negative patients with Mycobacterium avium complex lung disease. Am J Respir Crit Care Med 2012; 185 (5) 575-583
  • 99 Maffei M, Halaas J, Ravussin E , et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1995; 1 (11) 1155-1161
  • 100 Flier JS. Lowered leptin slims immune response. Nat Med 1998; 4 (10) 1124-1125
  • 101 Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 1998; 394 (6696) 897-901
  • 102 Matarese G, Moschos S, Mantzoros CS. Leptin in immunology. J Immunol 2005; 174 (6) 3137-3142
  • 103 Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 2005; 115 (5) 911-919 , quiz 920
  • 104 Fantuzzi G, Faggioni R. Leptin in the regulation of immunity, inflammation, and hematopoiesis. J Leukoc Biol 2000; 68 (4) 437-446
  • 105 Gainsford T, Willson TA, Metcalf D , et al. Leptin can induce proliferation, differentiation, and functional activation of hemopoietic cells. Proc Natl Acad Sci U S A 1996; 93 (25) 14564-14568
  • 106 Mancuso P, Huffnagle GB, Olszewski MA, Phipps J, Peters-Golden M. Leptin corrects host defense defects after acute starvation in murine pneumococcal pneumonia. Am J Respir Crit Care Med 2006; 173 (2) 212-218
  • 107 Moore SI, Huffnagle GB, Chen G-H, White ES, Mancuso P. Leptin modulates neutrophil phagocytosis of Klebsiella pneumoniae. Infect Immun 2003; 71 (7) 4182-4185
  • 108 Ordway D, Henao-Tamayo M, Smith E , et al. Animal model of Mycobacterium abscessus lung infection. J Leukoc Biol 2008; 83 (6) 1502-1511
  • 109 Wieland CW, Florquin S, Chan ED , et al. Pulmonary Mycobacterium tuberculosis infection in leptin-deficient ob/ob mice. Int Immunol 2005; 17 (11) 1399-1408
  • 110 Buyukoglan H, Gulmez I, Kelestimur F , et al. Leptin levels in various manifestations of pulmonary tuberculosis. Mediators Inflamm 2007; 2007: 64859
  • 111 Schaible UE, Kaufmann SHE. Malnutrition and infection: complex mechanisms and global impacts. PLoS Med 2007; 4 (5) e115
  • 112 van Crevel R, Karyadi E, Netea MG , et al. Decreased plasma leptin concentrations in tuberculosis patients are associated with wasting and inflammation. J Clin Endocrinol Metab 2002; 87 (2) 758-763
  • 113 Cakir B, Yönem A, Güler S , et al. Relation of leptin and tumor necrosis factor alpha to body weight changes in patients with pulmonary tuberculosis. Horm Res 1999; 52 (6) 279-283
  • 114 Schwenk A, Hodgson L, Rayner CF, Griffin GE, Macallan DC. Leptin and energy metabolism in pulmonary tuberculosis. Am J Clin Nutr 2003; 77 (2) 392-398
  • 115 Faggioni R, Fantuzzi G, Fuller J, Dinarello CA, Feingold KR, Grunfeld C. IL-1 beta mediates leptin induction during inflammation. Am J Physiol 1998; 274 (1 Pt 2) R204-R208
  • 116 Grunfeld C, Zhao C, Fuller J , et al. Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters. J Clin Invest 1996; 97 (9) 2152-2157
  • 117 Sarraf P, Frederich RC, Turner EM , et al. Multiple cytokines and acute inflammation raise mouse leptin levels: potential role in inflammatory anorexia. J Exp Med 1997; 185 (1) 171-175
  • 118 Carlson GL, Saeed M, Little RA, Irving MH. Serum leptin concentrations and their relation to metabolic abnormalities in human sepsis. Am J Physiol 1999; 276 (4 Pt 1) E658-E662
  • 119 Yüksel I, Sencan M, Dökmetaş HS, Dökmetaş I, Ataseven H, Yönem O. The relation between serum leptin levels and body fat mass in patients with active lung tuberculosis. Endocr Res 2003; 29 (3) 257-264
  • 120 van Lettow M, van der Meer JWM, West CE, van Crevel R, Semba RD. Interleukin-6 and human immunodeficiency virus load, but not plasma leptin concentration, predict anorexia and wasting in adults with pulmonary tuberculosis in Malawi. J Clin Endocrinol Metab 2005; 90 (8) 4771-4776
  • 121 Settas LD, Tsimirikas G, Vosvotekas G, Triantafyllidou E, Nicolaides P. Reactivation of pulmonary tuberculosis in a patient with rheumatoid arthritis during treatment with IL-1 receptor antagonists (anakinra). J Clin Rheumatol 2007; 13 (4) 219-220
  • 122 Denis M, Ghadirian E. Interleukin-1 is involved in mouse resistance to Mycobacterium avium. Infect Immun 1994; 62 (2) 457-461
  • 123 Beamer GL, Flaherty DK, Assogba BD , et al. Interleukin-10 promotes Mycobacterium tuberculosis disease progression in CBA/J mice. J Immunol 2008; 181 (8) 5545-5550
  • 124 Hickman SP, Chan J, Salgame P. Mycobacterium tuberculosis induces differential cytokine production from dendritic cells and macrophages with divergent effects on naive T cell polarization. J Immunol 2002; 168 (9) 4636-4642
  • 125 Guide SV, Holland SM. Host susceptibility factors in mycobacterial infection. Genetics and body morphotype. Infect Dis Clin North Am 2002; 16 (1) 163-186
  • 126 Roesler H. The relation of the shape of the heart to the shape of the chest. Am J Radiol 1934; 32: 464-486
  • 127 Davies MK, Mackintosh P, Cayton RM, Page AJ, Shiu MF, Littler WA. The straight back syndrome. Q J Med 1980; 49 (196) 443-460
  • 128 Freed LA, Levy D, Levine RA , et al. Prevalence and clinical outcome of mitral-valve prolapse. N Engl J Med 1999; 341 (1) 1-7
  • 129 Roman MJ, Devereux RB, Kramer-Fox R, Spitzer MC. Comparison of cardiovascular and skeletal features of primary mitral valve prolapse and Marfan syndrome. Am J Cardiol 1989; 63 (5) 317-321
  • 130 Judge DP, Dietz HC. Marfan's syndrome. Lancet 2005; 366 (9501) 1965-1976
  • 131 Champsi J, Young LS, Bermudez LE. Production of TNF-alpha, IL-6 and TGF-beta, and expression of receptors for TNF-alpha and IL-6, during murine Mycobacterium avium infection. Immunology 1995; 84 (4) 549-554
  • 132 Denis M, Ghadirian E. Transforming growth factor beta (TGF-b1) plays a detrimental role in the progression of experimental Mycobacterium avium infection; in vivo and in vitro evidence. Microb Pathog 1991; 11 (5) 367-372
  • 133 Hirsch CS, Yoneda T, Averill L, Ellner JJ, Toossi Z. Enhancement of intracellular growth of Mycobacterium tuberculosis in human monocytes by transforming growth factor-beta 1. J Infect Dis 1994; 170 (5) 1229-1237
  • 134 Roberts T, Beyers N, Aguirre A, Walzl G. Immunosuppression during active tuberculosis is characterized by decreased interferon- gamma production and CD25 expression with elevated forkhead box P3, transforming growth factor- beta, and interleukin-4 mRNA levels. J Infect Dis 2007; 195 (6) 870-878
  • 135 Foster ME, Foster DR. Bronchiectasis and Marfan's syndrome. Postgrad Med J 1980; 56 (660) 718-719
  • 136 Wood JR, Bellamy D, Child AH, Citron KM. Pulmonary disease in patients with Marfan syndrome. Thorax 1984; 39 (10) 780-784
  • 137 Paulson ML, Olivier KN, Holland SM. Pulmonary non-tuberculous mycobacterial infection in congenital contractural arachnodactyly. Int J Tuberc Lung Dis 2012; 16 (4) 561-563
  • 138 Colombo RE, Hill SC, Claypool RJ, Holland SM, Olivier KN. Familial clustering of pulmonary nontuberculous mycobacterial disease. Chest 2010; 137 (3) 629-634