Skip to main content

Advertisement

Log in

Prodrug Applications for Targeted Cancer Therapy

  • Review Article
  • Theme: Chemical, Pharmacologic, and Clinical Perspectives of Prodrugs
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Prodrugs are widely used in the targeted delivery of cytotoxic compounds to cancer cells. To date, targeted prodrugs for cancer therapy have achieved great diversity in terms of target selection, activation chemistry, as well as size and physicochemical nature of the prodrug. Macromolecular prodrugs such as antibody-drug conjugates, targeted polymer-drug conjugates and other conjugates that self-assemble to form liposomal and micellar nanoparticles currently represent a major trend in prodrug development for cancer therapy. In this review, we explore a unified view of cancer-targeted prodrugs and highlight several examples from recombinant technology that exemplify the prodrug concept but are not identified as such. Recombinant “prodrugs” such as engineered anthrax toxin show promise in biological specificity through the conditionally targeting of multiple cellular markers. Conditional targeting is achieved by structural complementation, the spontaneous assembly of engineered inactive subunits or fragments to reconstitute functional activity. These complementing systems can be readily adapted to achieve conditionally bispecific targeting of enzymes that are used to activate low-molecular weight prodrugs. By leveraging strengths from medicinal chemistry, polymer science, and recombinant technology, prodrugs are poised to remain a core component of highly focused and tailored strategies aimed at conditionally attacking complex molecular phenotypes in clinically relevant cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Kurzrock R, Kantarjian HM, Druker BJ, Talpaz M. Philadelphia chromosome-positive leukemias: from basic mechanisms to molecular therapeutics. Ann Intern Med. 2003;138(10):819–30. doi:10.7326/0003-4819-138-10-200305200-00010.

    Article  CAS  PubMed  Google Scholar 

  2. Singh Y, Palombo M, Sinko PJ. Recent trends in targeted anticancer prodrug and conjugate design. Curr Med Chem. 2008;15(18):1802–26. doi:10.2174/092986708785132997.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Han HK, Amidon GL. Targeted prodrug design to optimize drug delivery. AAPS Pharmsci. 2000;2(1).

  4. Silva AT, Chung MC, Castro LF, Guido RV, Ferreira EI. Advances in prodrug design. Mini Rev Med Chem. 2005;5(10):893–914.

    Article  PubMed  Google Scholar 

  5. Kratz F, Müller IA, Ryppa C, Warnecke A. Prodrug strategies in anticancer chemotherapy. ChemMedChem. 2008;3(1):20–53. doi:10.1002/cmdc.200700159.

    Article  CAS  PubMed  Google Scholar 

  6. Mahato R, Tai W, Cheng K. Prodrugs for improving tumor targetability and efficiency. Adv Drug Deliv Rev. 2011;63(8):659–70. doi:10.1016/j.addr.2011.02.002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Choi KY, Swierczewska M, Lee S, Chen X. Protease-activated drug development. Theranostics. 2012;2(2):156–78. doi:10.7150/thno.4068.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Denmeade SR, Nagy A, Gao J, Lilja H, Schally AV, Isaacs JT. Enzymatic activation of a doxorubicin-peptide prodrug by prostate-specific antigen. Cancer Res. 1998;58(12):2537–40.

    CAS  PubMed  Google Scholar 

  9. Denmeade SR, Jakobsen CM, Janssen S, Khan SR, Garrett ES, Lilja H, et al. Prostate-specific antigen-activated thapsigargin prodrug as targeted therapy for prostate cancer. J Natl Cancer Inst. 2003;95(13):990–1000. doi:10.1093/jnci/95.13.990.

    Article  CAS  PubMed  Google Scholar 

  10. Albright CF, Graciani N, Han W, Yue E, Stein R, Lai Z, et al. Matrix metalloproteinase-activated doxorubicin prodrugs inhibit HT1080 xenograft growth better than doxorubicin with less toxicity. Mol Cancer Ther. 2005;4(5):751–60. doi:10.1158/1535-7163.mct-05-0006.

    Article  CAS  PubMed  Google Scholar 

  11. Low PS, Antony AC. Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv Drug Deliv Rev. 2004;56(8):1055–8. doi:10.1016/j.addr.2004.02.003.

    Article  CAS  PubMed  Google Scholar 

  12. Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 2000;60(3):722–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer. 2002;2(2):91. doi:10.1038/Nrc727.

    Article  PubMed  Google Scholar 

  14. Landowski CP, Vig BS, Song X, Amidon GL. Targeted delivery to PEPT1-overexpressing cells: acidic, basic, and secondary floxuridine amino acid ester prodrugs. Mol Cancer Ther. 2005;4(4):659–67. doi:10.1158/1535-7163.MCT-04-0290.

    Article  CAS  PubMed  Google Scholar 

  15. Ducry L, Stump B. Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug Chem. 2010;21(1):5–13. doi:10.1021/bc9002019.

    Article  CAS  PubMed  Google Scholar 

  16. Lewis Phillips GD, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E, et al. Targeting HER2-positive breast cancer with Trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008;68(22):9280–90. doi:10.1158/0008-5472.can-08-1776.

    Article  CAS  PubMed  Google Scholar 

  17. Seymour LW, Ulbrich K, Wedge SR, Hume IC, Strohalm J, Duncan R. N-(2-hydroxypropyl)methacrylamide copolymers targeted to the hepatocyte galactose-receptor: pharmacokinetics in DBA2 mice. Br J Cancer. 1991;63(6):859–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Oh EJ, Park K, Kim KS, Kim J, Yang JA, Kong JH, et al. Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J Control Release. 2010;141(1):2–12. doi:10.1016/j.jconrel.2009.09.010.

    Article  CAS  PubMed  Google Scholar 

  19. Orlova A, Magnusson M, Eriksson TLJ, Nilsson M, Larsson B, Höidén-Guthenberg I, et al. Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res. 2006;66(8):4339–48. doi:10.1158/0008-5472.can-05-3521.

    Article  CAS  PubMed  Google Scholar 

  20. Ferreira CS, Cheung MC, Missailidis S, Bisland S, Gariepy J. Phototoxic aptamers selectively enter and kill epithelial cancer cells. Nucleic Acids Res. 2009;37(3):866–76. doi:10.1093/nar/gkn967.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Danson S, Ward TH, Butler J, Ranson M. DT-diaphorase: a target for new anticancer drugs. Cancer Treat Rev. 2004;30(5):437–49. doi:10.1016/j.ctrv.2004.01.002.

    Article  CAS  PubMed  Google Scholar 

  22. Hargreaves RH, Hartley JA, Butler J. Mechanisms of action of quinone-containing alkylating agents: DNA alkylation by aziridinylquinones. Front Biosci. 2000;5:E172–80.

    Article  CAS  PubMed  Google Scholar 

  23. Shay JW, Zou Y, Hiyama E, Wright WE. Telomerase and cancer. Hum Mol Genet. 2001;10(7):677–85. doi:10.1093/hmg/10.7.677.

    Article  CAS  PubMed  Google Scholar 

  24. Polvani S, Calamante M, Foresta V, Ceni E, Mordini A, Quattrone A, et al. Acycloguanosyl 5′-thymidyltriphosphate, a thymidine analogue prodrug activated by telomerase, reduces pancreatic tumor growth in mice. Gastroenterology. 2011;140(2):709–20.e9. doi:10.1053/j.gastro.2010.10.050.

    Article  CAS  PubMed  Google Scholar 

  25. Bennewith KL, Dedhar S. Targeting hypoxic tumour cells to overcome metastasis. BMC Cancer. 2011;11:504. doi:10.1186/1471-2407-11-504.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer. 2011;11(6):393–410. http://www.nature.com/nrc/journal/v11/n6/suppinfo/nrc3064_S1.html.

  27. Bouquet F, Ousset M, Biard D, Fallone F, Dauvillier S, Frit P, et al. A DNA-dependent stress response involving DNA-PK occurs in hypoxic cells and contributes to cellular adaptation to hypoxia. J Cell Sci. 2011;124(Pt 11):1943–51. doi:10.1242/jcs.078030.

    Article  CAS  PubMed  Google Scholar 

  28. Lindquist Kirstin E, Cran Jordan D, Kordic K, Chua Peter C, Winters Geoffrey C, Tan Jason S, et al. Selective radiosensitization of hypoxic cells using BCCA621C: a novel hypoxia activated prodrug targeting DNA-dependent protein kinase. Tumor Microenviron Ther. 2013;1:46. doi:10.2478/tumor-2013-0003.

    Google Scholar 

  29. Portwood S, Lal D, Hsu Y-C, Vargas R, Johnson MK, Wetzler M, et al. Activity of the hypoxia-activated prodrug, TH-302, in preclinical human acute myeloid leukemia models. Clin Cancer Res. 2013. doi:10.1158/1078-0432.ccr-13-0674.

    PubMed  Google Scholar 

  30. Bhargava A, Vaishampayan UN. Satraplatin: leading the new generation of oral platinum agents. Expert Opin Investig Drugs. 2009;18(11):1787–97. doi:10.1517/13543780903362437.

    Article  CAS  PubMed  Google Scholar 

  31. Mukhopadhyay S, Barnés CM, Haskel A, Short SM, Barnes KR, Lippard SJ. Conjugated platinum(IV) − peptide complexes for targeting angiogenic tumor vasculature. Bioconjug Chem. 2007;19(1):39–49. doi:10.1021/bc070031k.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Yamamoto N, Renfrew AK, Kim BJ, Bryce NS, Hambley TW. Dual targeting of hypoxic and acidic tumor environments with a cobalt(III) chaperone complex. J Med Chem. 2012;55(24):11013–21. doi:10.1021/jm3014713.

    Article  CAS  PubMed  Google Scholar 

  33. Erbs P, Regulier E, Kintz J, Leroy P, Poitevin Y, Exinger F, et al. In vivo cancer gene therapy by adenovirus-mediated transfer of a bifunctional yeast cytosine deaminase/uracil phosphoribosyltransferase fusion gene. Cancer Res. 2000;60(14):3813–22.

    CAS  PubMed  Google Scholar 

  34. Moolten FL. Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res. 1986;46(10):5276–81.

    CAS  PubMed  Google Scholar 

  35. Parker WB, Allan PW, Shaddix SC, Rose LM, Speegle HF, Gillespie GY, et al. Metabolism and metabolic actions of 6-methylpurine and 2-fluoroadenine in human cells. Biochem Pharmacol. 1998;55(10):1673–81. doi:10.1016/S0006-2952(98)00034-3.

    Article  CAS  PubMed  Google Scholar 

  36. Hazra S, Sabini E, Ort S, Konrad M, Lavie A. Extending thymidine kinase activity to the catalytic repertoire of human deoxycytidine kinase. Biochemistry. 2009;48(6):1256–63. doi:10.1021/bi802062w.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Sato T, Neschadim A, Konrad M, Fowler DH, Lavie A, Medin JA. Engineered human tmpk/AZT as a novel enzyme/prodrug axis for suicide gene therapy. Mol Ther. 2007;15(5):962–70. doi:10.1038/mt.sj.6300122.

    Article  CAS  PubMed  Google Scholar 

  38. Vernejoul F, Ghenassia L, Souque A, Lulka H, Drocourt D, Cordelier P, et al. Gene therapy based on gemcitabine chemosensitization suppresses pancreatic tumor growth. Mol Ther. 2006;14(6):758–67.

    Article  CAS  PubMed  Google Scholar 

  39. Kerr DE, Senter PD, Burnett WV, Hirschberg DL, Hellstrom I, Hellstrom KE. Antibodypenicillin-V-amidase conjugates kill antigen-positive tumor cells when combined with doxorubicin phenoxyacetamide. Cancer Immunol Immunother. 1990;31(4):202–6.

    Article  CAS  PubMed  Google Scholar 

  40. Yoon KJ, Qi J, Remack JS, Virga KG, Hatfield MJ, Potter PM, et al. Development of an etoposide prodrug for dual prodrug-enzyme antitumor therapy. Mol Cancer Ther. 2006;5(6):1577–84. doi:10.1158/1535-7163.MCT-06-0090.

    Article  CAS  PubMed  Google Scholar 

  41. Phelan RM, Ostermeier M, Townsend CA. Design and synthesis of a β-lactamase activated 5-fluorouracil prodrug. Bioorg Med Chem Lett. 2009;19(4):1261–3. doi:10.1016/j.bmcl.2008.12.057.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Tietze LF, Schmuck K. Prodrugs for targeted tumor therapies: recent developments in ADEPT, GDEPT and PMT. Curr Pharm Des. 2011;17(32):3527–47.

    Article  CAS  PubMed  Google Scholar 

  43. Aboody KS, Najbauer J, Metz MZ, D’Apuzzo M, Gutova M, Annala AJ, et al. Neural stem cell-mediated enzyme/prodrug therapy for glioma: preclinical studies. Sci Transl Med. 2013;5(184):184ra59. doi:10.1126/scitranslmed.3005365.

    Article  PubMed  Google Scholar 

  44. Umer B, Good D, Anne J, Duan W, Wei MQ. Clostridial spores for cancer therapy: targeting solid tumour microenvironment. J Toxicol. 2012;2012:862764. doi:10.1155/2012/862764.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Massa PE, Paniccia A, Monegal A, de Marco A, Rescigno M. Salmonella engineered to express CD20-targeting antibodies and a drug-converting enzyme can eradicate human lymphomas. Blood. 2013;122(5):705–14. doi:10.1182/blood-2012-12-474098.

    Article  CAS  PubMed  Google Scholar 

  46. Fan J, Zeng F, Xu J, Wu S. Targeted anti-cancer prodrug based on carbon nanotube with photodynamic therapeutic effect and pH-triggered drug release. J Nanoparticle Res. 2013;15(9):1–15. doi:10.1007/s11051-013-1911-z.

    Article  CAS  Google Scholar 

  47. Min Y, Li J, Liu F, Yeow EK, Xing B. Near-infrared light-mediated photoactivation of a platinum antitumor prodrug and simultaneous cellular apoptosis imaging by upconversion-luminescent nanoparticles. Angew Chem Int Ed Engl. 2013. doi:10.1002/anie.201308834.

    Google Scholar 

  48. Barenholz Y. Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–34. doi:10.1016/j.jconrel.2012.03.020.

    Article  CAS  PubMed  Google Scholar 

  49. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12 Pt 1):6387–92.

    CAS  PubMed  Google Scholar 

  50. Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature. 2003;422(6927):37–44. doi:10.1038/nature01451.

    Article  CAS  PubMed  Google Scholar 

  51. Li C, Wallace S. Polymer-drug conjugates: recent development in clinical oncology. Adv Drug Deliv Rev. 2008;60(8):886–98. doi:10.1016/j.addr.2007.11.009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Wong AD, DeWit MA, Gillies ER. Amplified release through the stimulus triggered degradation of self-immolative oligomers, dendrimers, and linear polymers. Adv Drug Deliv Rev. 2012;64(11):1031–45. doi:10.1016/j.addr.2011.09.012.

    Article  CAS  PubMed  Google Scholar 

  53. Dhar S, Liu Z, Thomale J, Dai H, Lippard SJ. Targeted single-wall carbon nanotube mediated Pt(IV) prodrug delivery using folate as a homing device. J Am Chem Soc. 2008;130(34):11467–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Feazell RP, Nakayama-Ratchford N, Dai H, Lippard SJ. Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J Am Chem Soc. 2007;129(27):8438–9. doi:10.1021/ja073231f.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci U S A. 2008;105(45):17356–61. doi:10.1073/pnas.0809154105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Zhang G, Zhang M, He J, Ni P. Synthesis and characterization of a new multifunctional polymeric prodrug paclitaxel-polyphosphoester-folic acid for targeted drug delivery. Polym Chem. 2013;4(16):4515–25. doi:10.1039/c3py00419h.

    Article  CAS  Google Scholar 

  57. Jung BY, Jeong YC, Min JH, Kim JE, Song YJ, Park JK, et al. Tumor-binding prodrug micelles of polymer-drug conjugates for anticancer therapy in HeLa cells. J Mater Chem. 2012;22(18):9385–94. doi:10.1039/C2jm30534h.

    Article  CAS  Google Scholar 

  58. Jensen SS, Andresen TL, Davidsen J, Høyrup P, Shnyder SD, Bibby MC, et al. Secretory phospholipase A2 as a tumor-specific trigger for targeted delivery of a novel class of liposomal prodrug anticancer etherlipids. Mol Cancer Ther. 2004;3(11):1451–8.

    CAS  PubMed  Google Scholar 

  59. Kreitman RJ, Pastan I. Antibody fusion proteins: anti-CD22 recombinant immunotoxin moxetumomab pasudotox. Clin Cancer Res. 2011;17(20):6398–405. doi:10.1158/1078-0432.ccr-11-0487.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Ogata M, Fryling CM, Pastan I, FitzGerald DJ. Cell-mediated cleavage of Pseudomonas exotoxin between Arg279 and Gly280 generates the enzymatically active fragment which translocates to the cytosol. J Biol Chem. 1992;267(35):25396–401.

    CAS  PubMed  Google Scholar 

  61. Hervent AS, De Keulenaer GW. Molecular mechanisms of cardiotoxicity induced by ErbB receptor inhibitor cancer therapeutics. Int J Mol Sci. 2012;13(10):12268–86. doi:10.3390/ijms131012268.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Chames P, Baty D. Bispecific antibodies for cancer therapy: the light at the end of the tunnel? mAbs. 2009;1(6):539–47.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Verheije MH, Rottier PJ. Retargeting of viruses to generate oncolytic agents. Adv Virol. 2012;2012:798526. doi:10.1155/2012/798526.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Stish BJ, Chen H, Shu Y, Panoskaltsis-Mortari A, Vallera DA. A bispecific recombinant cytotoxin (DTEGF13) targeting human interleukin-13 and epidermal growth factor receptors in a mouse xenograft model of prostate cancer. Clin Cancer Res. 2007;13(21):6486–93. doi:10.1158/1078-0432.ccr-07-0938.

    Article  CAS  PubMed  Google Scholar 

  65. Oh S, Stish BJ, Vickers SM, Buchsbaum DJ, Saluja AK, Vallera DA. A new drug delivery method of bispecific ligand-directed toxins, which reduces toxicity and promotes efficacy in a model of orthotopic pancreatic cancer. Pancreas. 2010;39(6):913–22. doi:10.1097/MPA.0b013e3181cbd908.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Poon GM. Quantitative analysis of affinity enhancement by noncovalently oligomeric ligands. Anal Biochem. 2013;433(1):19–27. doi:10.1016/j.ab.2012.10.005.

    Article  CAS  PubMed  Google Scholar 

  67. Young JA, Collier RJ. Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu Rev Biochem. 2007;76:243–65. doi:10.1146/annurev.biochem.75.103004.142728.

    Article  CAS  PubMed  Google Scholar 

  68. Ascenzi P, Visca P, Ippolito G, Spallarossa A, Bolognesi M, Montecucco C. Anthrax toxin: a tripartite lethal combination. FEBS Lett. 2002;531(3):384–8. doi:10.1016/S0014-5793(02)03609-8.

    Article  CAS  PubMed  Google Scholar 

  69. Kintzer AF, Thoren KL, Sterling HJ, Dong KC, Feld GK, Tang II, et al. The protective antigen component of anthrax toxin forms functional octameric complexes. J Mol Biol. 2009;392(3):614–29. doi:10.1016/j.jmb.2009.07.037.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Abrami L, Liu S, Cosson P, Leppla SH, van der Goot FG. Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J Cell Biol. 2003;160(3):321–8. doi:10.1083/jcb.200211018.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Miller CJ, Elliott JL, Collier RJ. Anthrax protective antigen: prepore-to-pore conversion. Biochemistry. 1999;38(32):10432–41. doi:10.1021/bi990792d.

    Article  CAS  PubMed  Google Scholar 

  72. Arora N, Klimpel KR, Singh Y, Leppla SH. Fusions of anthrax toxin lethal factor to the ADP-ribosylation domain of Pseudomonas exotoxin A are potent cytotoxins which are translocated to the cytosol of mammalian cells. J Biol Chem. 1992;267(22):15542–8.

    CAS  PubMed  Google Scholar 

  73. Arora N, Leppla SH. Fusions of anthrax toxin lethal factor with shiga toxin and diphtheria toxin enzymatic domains are toxic to mammalian cells. Infect Immun. 1994;62(11):4955–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Blanke SR, Milne JC, Benson EL, Collier RJ. Fused polycationic peptide mediates delivery of diphtheria toxin A chain to the cytosol in the presence of anthrax protective antigen. Proc Natl Acad Sci U S A. 1996;93(16):8437–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. McCluskey AJ, Collier RJ. Receptor-directed chimeric toxins created by sortase-mediated protein fusion. Mol Cancer Ther. 2013;12(10):2273–81. doi:10.1158/1535-7163.MCT-13-0358.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. McCluskey AJ, Olive AJ, Starnbach MN, Collier RJ. Targeting HER2-positive cancer cells with receptor-redirected anthrax protective antigen. Mol Oncol. 2013;7(3):440–51. doi:10.1016/j.molonc.2012.12.003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Mechaly A, McCluskey AJ, Collier RJ. Changing the receptor specificity of anthrax toxin. MBio. 2012;3(3):e00088-12. doi:10.1128/mBio.00088-12.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Liu S, Aaronson H, Mitola DJ, Leppla SH, Bugge TH. Potent antitumor activity of a urokinase-activated engineered anthrax toxin. Proc Natl Acad Sci U S A. 2003;100(2):657–62. doi:10.1073/pnas.0236849100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Liu S, Bugge TH, Leppla SH. Targeting of tumor cells by cell surface urokinase plasminogen activator-dependent anthrax toxin. J Biol Chem. 2001;276(21):17976–84. doi:10.1074/jbc.M011085200.

    Article  CAS  PubMed  Google Scholar 

  80. Liu S, Netzel-Arnett S, Birkedal-Hansen H, Leppla SH. Tumor cell-selective cytotoxicity of matrix metalloproteinase-activated anthrax toxin. Cancer Res. 2000;60(21):6061–7.

    CAS  PubMed  Google Scholar 

  81. Liu S, Wang H, Currie BM, Molinolo A, Leung HJ, Moayeri M, et al. Matrix metalloproteinase-activated anthrax lethal toxin demonstrates high potency in targeting tumor vasculature. J Biol Chem. 2008;283(1):529–40. doi:10.1074/jbc.M707419200.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Abi-Habib RJ, Singh R, Liu S, Bugge TH, Leppla SH, Frankel AE. A urokinase-activated recombinant anthrax toxin is selectively cytotoxic to many human tumor cell types. Mol Cancer Ther. 2006;5(10):2556–62. doi:10.1158/1535-7163.MCT-06-0315.

    Article  CAS  PubMed  Google Scholar 

  83. Liu S, Redeye V, Kuremsky JG, Kuhnen M, Molinolo A, Bugge TH, et al. Intermolecular complementation achieves high-specificity tumor targeting by anthrax toxin. Nat Biotechnol. 2005;23(6):725–30. doi:10.1038/nbt1091.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Phillips DD, Fattah RJ, Crown D, Zhang Y, Liu S, Moayeri M, et al. Engineering anthrax toxin variants that exclusively form octamers and their application to targeting tumors. J Biol Chem. 2013;288(13):9058–65. doi:10.1074/jbc.M113.452110.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Pentelute BL, Sharma O, Collier RJ. Chemical dissection of protein translocation through the anthrax toxin pore. Angew Chem Int Ed Engl. 2011;50(10):2294–6. doi:10.1002/anie.201006460.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Pentelute BL, Barker AP, Janowiak BE, Kent SB, Collier RJ. A semisynthesis platform for investigating structure-function relationships in the N-terminal domain of the anthrax Lethal Factor. ACS Chem Biol. 2010;5(4):359–64. doi:10.1021/cb100003r.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Yamada S, Kuroda T, Fuchs BC, He X, Supko JG, Schmitt A, et al. Oncolytic herpes simplex virus expressing yeast cytosine deaminase: relationship between viral replication, transgene expression, prodrug bioactivation. Cancer Gene Ther. 2012;19(3):160–70. doi:10.1038/cgt.2011.70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Simpson GR, Horvath A, Annels NE, Pencavel T, Metcalf S, Seth R, et al. Combination of a fusogenic glycoprotein, pro-drug activation and oncolytic HSV as an intravesical therapy for superficial bladder cancer. Br J Cancer. 2012;106(3):496–507. doi:10.1038/bjc.2011.577.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Boland EL, Van Dyken CM, Duckett RM, McCluskey AJ, Poon GM. Structural complementation of the catalytic domain of Pseudomonas exotoxin A. J Mol Biol. 2014;426(3):645–55. doi:10.1016/j.jmb.2013.11.002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Dong Z, Nor JE. Transcriptional targeting of tumor endothelial cells for gene therapy. Adv Drug Deliv Rev. 2009;61(7–8):542–53. doi:10.1016/j.addr.2009.02.006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Lu Y. Transcriptionally regulated, prostate-targeted gene therapy for prostate cancer. Adv Drug Deliv Rev. 2009;61(7–8):572–88. doi:10.1016/j.addr.2009.03.014.

    Article  CAS  PubMed  Google Scholar 

  92. Robson T, Hirst DG. Transcriptional targeting in cancer gene therapy. J Biomed Biotechnol. 2003;2003(2):110–37. doi:10.1155/S1110724303209074.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Galarneau A, Primeau M, Trudeau LE, Michnick SW. Beta-lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein interactions. Nat Biotechnol. 2002;20(6):619–22. doi:10.1038/nbt0602-619.

    Article  CAS  PubMed  Google Scholar 

  94. Ulbrich K, Etrych T, Chytil P, Jelinkova M, Rihova B. HPMA copolymers with pH controlled release of doxorubicin: in vitro cytotoxicity and in vivo antitumor activity. J Control Release. 2003;87(1–3):33–47.

    Article  CAS  PubMed  Google Scholar 

  95. Chandran SS, Nan A, Rosen DM, Ghandehari H, Denmeade SR. A prostate-specific antigen-activated N-(2-hydroxypropyl) methacrylamide copolymer prodrug as dual-targeted therapy for prostate cancer. Mol Cancer Ther. 2007;6(11):2928–37. doi:10.1158/1535-7163.mct-07-0392.

    Article  CAS  PubMed  Google Scholar 

  96. Huang B, Desai A, Tang S, Thomas TP, Baker JR. The synthesis of a c(RGDyK) targeted SN38 prodrug with an indolequinone structure for bioreductive drug release. Org Lett. 2010;12(7):1384–7. doi:10.1021/ol1002626.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. de Groot FM, Broxterman HJ, Adams HP, van Vliet A, Tesser GI, Elderkamp YW, et al. Design, synthesis, and biological evaluation of a dual tumor-specific motive containing integrintargeted plasmin-cleavable doxorubicin prodrug. Mol Cancer Ther. 2002;1(11):901–11.

    PubMed  Google Scholar 

  98. Francisco JA, Cerveny CG, Meyer DL, Mixan BJ, Klussman K, Chace DF, et al. cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood. 2003;102(4):1458–65. doi:10.1182/blood-2003-01-0039.

    Article  CAS  PubMed  Google Scholar 

  99. Sanderson RJ, Hering MA, James SF, Sun MMC, Doronina SO, Siadak AW, et al. In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate. Clin Cancer Res. 2005;11(2):843–52.

    CAS  PubMed  Google Scholar 

  100. Omelyanenko V, Gentry C, Kopečková P, Kopeček J. HPMA copolymer-anticancer drug-OV-TL16 antibody conjugates. II. Processing in epithelial ovarian carcinoma cells in vitro. Int J Cancer. 1998;75(4):600–8. doi:10.1002/(SICI)1097-0215(19980209)75:4<600::AID-IJC18>3.0.CO;2-C.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

G.M.K.P. received financial support from Grant Number UL1RR025014 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH) and NIH Roadmap for Medical Research, and the College of Pharmacy, Washington State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory M. K. Poon.

Additional information

Guest Editors: D. Robert Lu and Lawrence Yu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giang, I., Boland, E.L. & Poon, G.M.K. Prodrug Applications for Targeted Cancer Therapy. AAPS J 16, 899–913 (2014). https://doi.org/10.1208/s12248-014-9638-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9638-z

KEY WORDS

Navigation