Skip to main content
Log in

The Mitochondrial Myopathy Encephalopathy, Lactic Acidosis with Stroke-Like Episodes (MELAS) Syndrome

A Review of Treatment Options

  • Therapy in Practice
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Mitochondrial encephalomyopathies are a multisystemic group of disorders that are characterised by a wide range of biochemical and genetic mitochondrial defects and variable modes of inheritance. Among this group of disorders, the mitochondrial myopathy, encephalopathy, lactic acidosis with stroke-like episodes (MELAS) syndrome is one of the most frequently occurring, maternally inherited mitochondrial disorders.

As the name implies, stroke-like episodes are the defining feature of the MELAS syndrome, often occurring before the age of 15 years. The clinical course of this disorder is highly variable, ranging from asymptomatic, with normal early development, to progressive muscle weakness, lactic acidosis, cognitive dysfunction, seizures, stroke-like episodes, encephalopathy and premature death.

This syndrome is associated with a number of point mutations in the mitochondrial DNA, with over 80% of the mutations occurring in the dihydrouridine loop of the mitochondrial transfer RNALeu(UUR) [tRNALeu(UUR)] gene. The pathophysiology of the disease is not completely understood; however, several different mechanisms are proposed to contribute to this disease. These include decreased aminoacylation of mitochondrial tRNA, resulting in decreased mitochondrial protein synthesis; changes in calcium homeostasis; and alterations in nitric oxide metabolism.

Currently, no consensus criteria exist for treating the MELAS syndrome or mitochondrial dysfunction in other diseases. Many of the therapeutic strategies used have been adopted as the result of isolated case reports or limited clinical studies that have included a heterogeneous population of patients with the MELAS syndrome, other defects in oxidative phosphorylation or lactic acidosis due to disorders of pyruvate metabolism. Current approaches to the treatment of the MELAS syndrome are based on the use of antioxidants, respiratory chain substrates and cofactors in the form of vitamins; however, no consistent benefits have been observed with these treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tritschler HJ, Medori R. Mitochondrial DNA alterations as a source of human disorders. Neurology 1993; 43(2): 280–8

    Article  PubMed  CAS  Google Scholar 

  2. Schon EA, Bonilla E, DiMauro S. Mitochondrial DNA mutations and pathogenesis. J Bioenerg Biomembr 1997; 29(2): 131–49

    Article  PubMed  CAS  Google Scholar 

  3. Majamaa K, Moilanen JS, Uimonen S, et al. Epidemiology of A3243G, the mutation for mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes: prevalence of the mutation in an adult population. Am J Hum Genet 1998; 63(2): 447–54

    Article  PubMed  CAS  Google Scholar 

  4. Chinnery PF, Johnson MA, Wardell TM, et al. The epidemiology of pathogenic mitochondrial DNA mutations. Ann Neurol 2000; 48(2): 188–93

    Article  PubMed  CAS  Google Scholar 

  5. Thambisetty M, Newman NJ, Glass JD, et al. A practical approach to the diagnosis and management of MELAS: case report and review. Neurologist 2002; 8(5): 302–12

    Article  PubMed  Google Scholar 

  6. Rahman S, Poulton J, Marchington D, et al. Decrease of 3243 A->G mtDNA mutation from blood in MELAS syndrome: a longitudinal study. Am J Hum Genet 2001; 68(1): 238–40

    Article  PubMed  CAS  Google Scholar 

  7. Sue CM, Quigley A, Katsabanis S, et al. Detection of MELAS A3243G point mutation in muscle, blood and hair follicles. J Neurol Sci 1998; 161(1): 36–9

    Article  PubMed  CAS  Google Scholar 

  8. Shanske S, Pancrudo J, Kaufmann P, et al. Varying loads of the mitochondrial DNA A3243G mutation in different tissues: implications for diagnosis. Am J Med Genet A 2004; 130(2): 134–7

    Article  Google Scholar 

  9. Goto Y, Horai S, Matsuoka T, et al. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS): a correlative study of the clinical features and mitochondrial DNA mutation. Neurology 1992; 42 (3 Pt 1): 545–50

    Article  PubMed  CAS  Google Scholar 

  10. Wallace DC. Diseases of the mitochondrial DNA. Annu Rev Biochem 1992; 61: 1175–212

    Article  PubMed  CAS  Google Scholar 

  11. DiMauro S. Mitochondrial diseases. Biochim Biophys Acta 2004; 1658(1–2): 80–8

    PubMed  CAS  Google Scholar 

  12. Zeviani M, Muntoni F, Savarese N, et al. A MERRF/MELAS overlap syndrome associated with a new point mutation in the mitochondrial DNA tRNA (Lys) gene. Eur J Hum Genet 1993; 1(1): 80–7

    PubMed  CAS  Google Scholar 

  13. Fabrizi GM, Cardaioli E, Grieco GS, et al. The A to G transition at nt 3243 of the mitochondrial tRNALeu (UUR) may cause an MERRF syndrome. J Neurol Neurosurg Psychiatry 1996; 61(1): 47–51

    Article  PubMed  CAS  Google Scholar 

  14. Koga Y, Akita Y, Takane N, et al. Heterogeneous presentation in A3243G mutation in the mitochondrial tRNA (Leu (UUR)) gene. Arch Dis Child 2000; 82(5): 407–11

    Article  PubMed  CAS  Google Scholar 

  15. Anan R, Nakagawa M, Miyata M, et al. Cardiac involvement in mitochondrial diseases: a study on 17 patients with documented mitochondrial DNA defects. Circulation 1995; 91(4): 955–61

    Article  PubMed  CAS  Google Scholar 

  16. Moraes CT, Ciacci F, Silvestri G, et al. Atypical clinical presentations associated with the MELAS mutation at position 3243 of human mitochondrial DNA. Neuromuscul Disord 1993; 3(1): 43–50

    Article  PubMed  CAS  Google Scholar 

  17. Shimomura T, Kitano A, Marukawa H, et al. Point mutation in platelet mitochondrial tRNA (Leu (UUR)) in patient with cluster headache. Lancet 1994; 344(8922): 625

    Article  PubMed  CAS  Google Scholar 

  18. van den Ouweland JM, Lemkes HH, Trembath RC, et al. Maternally inherited diabetes and deafness is a distinct subtype of diabetes and associates with a single point mutation in the mitochondrial tRNA (Leu (UUR)) gene. Diabetes 1994; 43(6): 746–51

    Article  PubMed  Google Scholar 

  19. Kishnani PS, Van Hove JL, Shoffner JS, et al. Acute pancreatitis in an infant with lactic acidosis and a mutation at nucleotide 3243 in the mitochondrial DNA tRNALeu (UUR) gene. Eur J Pediatr 1996; 155(10): 898–903

    Article  PubMed  CAS  Google Scholar 

  20. Ciafaloni E, Ricci E, Shanske S, et al. MELAS: clinical features, biochemistry, and molecular genetics. Ann Neurol 1992; 31(4): 391–8

    Article  PubMed  CAS  Google Scholar 

  21. Hirano M, Ricci E, Koenigsberger MR, et al. Melas: an original case and clinical criteria for diagnosis. Neuromuscul Disord 1992; 2(2): 125–35

    Article  PubMed  CAS  Google Scholar 

  22. Hirano M, Pavlakis SG. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS): current concepts. J Child Neurol 1994; 9(1): 4–13

    Article  PubMed  CAS  Google Scholar 

  23. Kadowaki T, Kadowaki H, Mori Y, et al. A subtype of diabetes mellitus associated with a mutation of mitochondrial DNA. N Engl J Med 1994; 330(14): 962–8

    Article  PubMed  CAS  Google Scholar 

  24. Morgan-Hughes JA, Sweeney MG, Cooper JM, et al. Mitochondrial DNA (mtDNA) diseases: correlation of genotype to phenotype. Biochim Biophys Acta 1995; 1271(1): 135–40

    Article  PubMed  Google Scholar 

  25. Crimi M, Galbiati S, Moroni I, et al. A missense mutation in the mitochondrial ND5 gene associated with a Leigh-MELAS overlap syndrome. Neurology 2003; 60(11): 1857–61

    Article  PubMed  Google Scholar 

  26. Dougherty FE, Ernst SG, Aprille JR. Familial recurrence of atypical symptoms in an extended pedigree with the syndrome of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). J Pediatr 1994; 125 (5 Pt 1): 758–61

    Article  PubMed  CAS  Google Scholar 

  27. Ohkoshi N, Ishii A, Shiraiwa N, et al. Dysfunction of the hypothalamic-pituitary system in mitochondrial encephalomyopathies. J Med 1998; 29(1–2): 13–29

    PubMed  CAS  Google Scholar 

  28. Yoneda M, Maeda M, Kimura H, et al. Vasogenic edema on MELAS: a serial study with diffusion-weighted MR imaging. Neurology 1999; 53(9): 2182–4

    Article  PubMed  CAS  Google Scholar 

  29. Wilichowski E, Pouwels PJ, Frahm J, et al. Quantitative proton magnetic resonance spectroscopy of cerebral metabolic disturbances in patients with MELAS. Neuropediatrics 1999; 30(5): 256–63

    Article  PubMed  CAS  Google Scholar 

  30. Taylor DE, Simonson SG. Use of near-infrared spectroscopy to monitor tissue oxygenation. New Horiz 1996; 4(4): 420–5

    PubMed  CAS  Google Scholar 

  31. Bank W, Park J, Lech G, et al. Near-infrared spectroscopy in the diagnosis of mitochondrial disorders. Biofactors 1998; 7(3): 243–5

    Article  PubMed  CAS  Google Scholar 

  32. Moraes CT, Ricci E, Bonilla E, et al. The mitochondrial tRNA (Leu (UUR)) mutation in mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS): genetic, biochemical, and morphological correlations in skeletal muscle. Am J Hum Genet 1992; 50(5): 934–49

    PubMed  CAS  Google Scholar 

  33. Hasegawa H, Matsuoka T, Goto Y, et al. Strongly succinate dehydrogenase-reactive blood vessels in muscles from patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. Ann Neurol 1991; 29(6): 601–5

    Article  PubMed  CAS  Google Scholar 

  34. Ohama E, Ohara S, Ikuta F, et al. Mitochondrial angiopathy in cerebral blood vessels of mitochondrial encephalomyopathy. Acta Neuropathol (Berl) 1987; 74(3): 226–33

    Article  CAS  Google Scholar 

  35. Kirino Y, Yasukawa T, Ohta S, et al. Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc Natl Acad Sci U S A 2004; 101(42): 15070–5

    Article  PubMed  CAS  Google Scholar 

  36. Kirino Y, Goto Y, Campos Y, et al. Specific correlation between the wobble modification deficiency in mutant tRNAs and the clinical features of a human mitochondrial disease. Proc Natl Acad Sci U S A 2005; 102(20): 7127–32

    Article  PubMed  CAS  Google Scholar 

  37. James AM, Sheard PW, Wei YH, et al. Decreased ATP synthesis is phenotypically expressed during increased energy demand in fibroblasts containing mitochondrial tRNA mutations. Eur J Biochem 1999; 259(1–2): 462–9

    Article  PubMed  CAS  Google Scholar 

  38. Rusanen H, Majamaa K, Hassinen IE. Increased activities of antioxidant enzymes and decreased ATP concentration in cultured myoblasts with the 3243A->G mutation in mitochondrial DNA. Biochim Biophys Acta 2000; 1500(1): 10–6

    Article  PubMed  CAS  Google Scholar 

  39. King MP, Koga Y, Davidson M, et al. Defects in mitochondrial protein synthesis and respiratory chain activity segregate with the tRNA (Leu (UUR)) mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes. Mol Cell Biol 1992; 12(2): 480–90

    PubMed  CAS  Google Scholar 

  40. Koga A, Koga Y, Akita Y, et al. Increased mitochondrial processing intermediates associated with three tRNA (Leu (UUR)) gene mutations. Neuromuscul Disord 2003; 13(3): 259–62

    Article  PubMed  Google Scholar 

  41. Kaufmann P, Koga Y, Shanske S, et al. Mitochondrial DNA and RNA processing in MELAS. Ann Neurol 1996; 40(2): 172–80

    Article  PubMed  CAS  Google Scholar 

  42. Koga Y, Yoshino M, Kato H. MELAS exhibits dominant negative effects on mitochondrial RNA processing. Ann Neurol 1998; 43(6): 835

    Article  PubMed  CAS  Google Scholar 

  43. Lenaz G, Baracca A, Carelli V, et al. Bioenergetics of mitochondrial diseases associated with mtDNA mutations. Biochim Biophys Acta 2004; 1658(1–2): 89–94

    PubMed  CAS  Google Scholar 

  44. Schanne FA, Kane AB, Young EE, et al. Calcium dependence of toxic cell death: a final common pathway. Science 1979; 206(4419): 700–2

    Article  PubMed  CAS  Google Scholar 

  45. Moudy AM, Handran SD, Goldberg MP, et al. Abnormal calcium homeostasis and mitochondrial polarization in a human encephalomyopathy. Proc Natl Acad Sci U S A 1995; 92(3): 729–33

    Article  PubMed  CAS  Google Scholar 

  46. Iizuka T, Sakai F, Suzuki N, et al. Neuronal hyperexcitability in stroke-like episodes of MELAS syndrome. Neurology 2002; 59(6): 816–24

    Article  PubMed  CAS  Google Scholar 

  47. Iizuka T, Sakai F, Kan S, et al. Slowly progressive spread of the stroke-like lesions in MELAS. Neurology 2003; 61(9): 1238–44

    Article  PubMed  Google Scholar 

  48. Naini A, Kaufmann P, Shanske S, et al. Hypocitrullinemia in patients with MELAS: an insight into the “MELAS paradox”. J Neurol Sci 2005; 229-230: 187–93

    Article  CAS  Google Scholar 

  49. Toda N, Okamura T. The pharmacology of nitric oxide in the peripheral nervous system of blood vessels. Pharmacol Rev 2003; 55(2): 271–324

    Article  PubMed  CAS  Google Scholar 

  50. Vos MH, Lipowski G, Lambry JC, et al. Dynamics of nitric oxide in the active site of reduced cytochrome c oxidase aa3. Biochemistry 2001; 40(26): 7806–11

    Article  PubMed  CAS  Google Scholar 

  51. Koga Y, Akita Y, Nishioka J, et al. L-arginine improves the symptoms of strokelike episodes in MELAS. Neurology 2005; 64(4): 710–2

    Article  PubMed  CAS  Google Scholar 

  52. Wu G, Morris Jr SM. Arginine metabolism: nitric oxide and beyond. Biochem J 1998; 336 (Pt 1): 1–17

    PubMed  CAS  Google Scholar 

  53. DiMauro S. Mitochondrial encephalomyopathies: what next? J Inherit Metab Dis 1996; 19(4): 489–503

    Article  PubMed  CAS  Google Scholar 

  54. Gold DR, Cohen BH. Treatment of mitochondrial cytopathies. Semin Neurol 2001; 21(3): 309–25

    Article  PubMed  CAS  Google Scholar 

  55. Cotariu D, Zaidman JL. Valproic acid and the liver. Clin Chem 1988; 34(5): 890–7

    PubMed  CAS  Google Scholar 

  56. Rumbach L, Mutet C, Cremel G, et al. Effects of sodium valproate on mitochondrial membranes: electron paramagnetic resonance and transmembrane protein movement studies. Mol Pharmacol 1986; 30(3): 270–3

    PubMed  CAS  Google Scholar 

  57. Ponchaut S, van Hoof F, Veitch K. Cytochrome aa3 depletion is the cause of the deficient mitochondrial respiration induced by chronic valproate administration. Biochem Pharmacol 1992; 43(3): 644–7

    Article  PubMed  CAS  Google Scholar 

  58. Chabrol B, Mancini J, Chretien D, et al. Valproate-induced hepatic failure in a case of cytochrome c oxidase deficiency. Eur J Pediatr 1994; 153(2): 133–5

    PubMed  CAS  Google Scholar 

  59. Lam CW, Lau CH, Williams JC, et al. Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) triggered by valproate therapy. Eur J Pediatr 1997; 156(7): 562–4

    Article  PubMed  CAS  Google Scholar 

  60. Ratnikova LA, Cheistiakov VV. Possible biochemical mechanism of the toxic effects of barbiturates [in Russian]. Biokhimiia 1978; 43(11): 1989–93

    PubMed  CAS  Google Scholar 

  61. Vorobjev IA, Zorov DB. Diazepam inhibits cell respiration and induces fragmentation of mitochondrial reticulum. FEBS Lett 1983; 163(2): 311–4

    Article  PubMed  CAS  Google Scholar 

  62. Morovvati S, Nakagawa M, Sato Y, et al. Phenotypes and mitochondrial DNA substitutions in families with A3243G mutation. Acta Neurol Scand 2002; 106(2): 104–8

    Article  PubMed  CAS  Google Scholar 

  63. Kuroda Y, Ito M, Naito E, et al. Concomitant administration of sodium dichloroacetate and vitamin B1 for lactic acidemia in children with MELAS syndrome. J Pediatr 1997; 131(3): 450–2

    Article  PubMed  CAS  Google Scholar 

  64. Majamaa K, Rusanen H, Remes A, et al. Metabolic interventions against complex I deficiency in MELAS syndrome. Mol Cell Biochem 1997; 174: 291–6

    Article  PubMed  CAS  Google Scholar 

  65. Penn AM, Lee JW, Thuillier P, et al. MELAS syndrome with mitochondrial tRNA (Leu) (UUR) mutation: correlation of clinical state, nerve conduction, and muscle 31P magnetic resonance spectroscopy during treatment with nicotinamide and riboflavin. Neurology 1992; 42(11): 2147–52

    Article  PubMed  CAS  Google Scholar 

  66. Napolitano A, Salvetti S, Vista M, et al. Long-term treatment with idebenone and riboflavin in a patient with MELAS. Neurol Sci 2000; 21(5 Suppl.): S981–2

    Article  PubMed  CAS  Google Scholar 

  67. Majamaa K, Rusanen H, Remes AM, et al. Increase of blood NAD+ and attenuation of lactacidemia during nicotinamide treatment of a patient with the MELAS syndrome. Life Sci 1996; 58(8): 691–9

    Article  PubMed  CAS  Google Scholar 

  68. Remes AM, Liimatta EV, Winqvist S, et al. Ubiquinone and nicotinamide treatment of patients with the 3243A->G mtDNA mutation. Neurology 2002; 59(8): 1275–7

    Article  PubMed  CAS  Google Scholar 

  69. Knip M, Douek IF, Moore WP, et al. Safety of high-dose nicotinamide: a review. Diabetologia 2000; 43(11): 1337–45

    Article  PubMed  CAS  Google Scholar 

  70. Landi L, Cabrini L, Sechi AM, et al. Antioxidative effect of ubiquinones on mitochondrial membranes. Biochem J 1984; 222(2): 463–6

    PubMed  CAS  Google Scholar 

  71. Bresolin N, Doriguzzi C, Ponzetto C, et al. Ubidecarenone in the treatment of mitochondrial myopathies: a multi-center double-blind trial. J Neurol Sci 1990; 100(1–2): 70–8

    Article  PubMed  CAS  Google Scholar 

  72. Chen RS, Huang CC, Chu NS. Coenzyme Q10 treatment in mitochondrial encephalomyopathies: short-term double-blind, crossover study. Eur Neurol 1997; 37(4): 212–8

    Article  PubMed  CAS  Google Scholar 

  73. Abe K, Fujimura H, Nishikawa Y, et al. Marked reduction in CSF lactate and pyruvate levels after CoQ therapy in a patient with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). Acta Neurol Scand 1991; 83(6): 356–9

    Article  PubMed  CAS  Google Scholar 

  74. Ihara Y, Namba R, Kuroda S, et al. Mitochondrial encephalomyopathy (MELAS): pathological study and successful therapy with coenzyme Q10 and idebenone. J Neurol Sci 1989; 90(3): 263–71

    Article  PubMed  CAS  Google Scholar 

  75. Matthews PM, Ford B, Dandurand RJ, et al. Coenzyme Q10 with multiple vitamins is generally ineffective in treatment of mitochondrial disease. Neurology 1993; 43(5): 884–90

    Article  PubMed  CAS  Google Scholar 

  76. Shoffner JM. Oxidative phosphorylation disease. In: Johnston RT, editor. Current therapy in neurological disease. Chicago (IL): Mosby, 1997: 332–42

    Google Scholar 

  77. Torii H, Yoshida K, Kobayashi T, et al. Disposition of idebenone (CV-2619), a new cerebral metabolism improving agent, in rats and dogs. J Pharmacobiodyn 1985; 8(6): 457–67

    Article  PubMed  CAS  Google Scholar 

  78. Imada I, Fujita T, Sugiyama Y, et al. Effects of idebenone and related compounds on respiratory activities of brain mitochondria, and on lipid peroxidation of their membranes. Arch Gerontol Geriatr 1989; 8(3): 323–41

    Article  PubMed  CAS  Google Scholar 

  79. Frackowiak RS, Herold S, Petty RK, et al. The cerebral metabolism of glucose and oxygen measured with positron tomography in patients with mitochondrial diseases. Brain 1988; 111 (Pt 5): 1009–24

    Article  PubMed  Google Scholar 

  80. Ikejiri Y, Mori E, Ishii K, et al. Idebenone improves cerebral mitochondrial oxidative metabolism in a patient with MELAS. Neurology 1996; 47(2): 583–5

    Article  PubMed  CAS  Google Scholar 

  81. Pisano P, Durand A, Autret E, et al. Plasma concentrations and pharmacokinetics of idebenone and its metabolites following single and repeated doses in young patients with mitochondrial encephalomyopathy. Eur J Clin Pharmacol 1996; 51(2): 167–9

    Article  PubMed  CAS  Google Scholar 

  82. Ichiki T, Tanaka M, Nishikimi M, et al. Deficiency of subunits of complex I and mitochondrial encephalomyopathy. Ann Neurol 1988; 23(3): 287–94

    Article  PubMed  CAS  Google Scholar 

  83. Oguro H, Iijima K, Takahashi K, et al. Successful treatment with succinate in a patient with MELAS. Intern Med 2004; 43(5): 427–31

    Article  PubMed  Google Scholar 

  84. Matsuura S, Arpin M, Hannum C, et al. In vitro synthesis and posttranslational uptake of cytochrome c into isolated mitochondria: role of a specific addressing signal in the apocytochrome. Proc Natl Acad Sci U S A 1981; 78(7): 4368–72

    Article  PubMed  CAS  Google Scholar 

  85. Tanaka J, Nagai T, Arai H, et al. Treatment of mitochondrial encephalomyopathy with a combination of cytochrome C and vitamins B1 and B2. Brain Dev 1997; 19(4): 262–7

    Article  PubMed  CAS  Google Scholar 

  86. Barak Y, Arnon S, Wolach B, et al. MELAS syndrome: peripheral neuropathy and cytochrome C-oxidase deficiency: a case report and review of the literature. Isr J Med Sci 1995; 31(4): 224–9

    PubMed  CAS  Google Scholar 

  87. Sampson V, Alleyne T. Cytochrome c/cytochrome c oxidase interaction: direct structural evidence for conformational changes during enzyme turnover. Eur J Biochem 2001; 268(24): 6534–44

    Article  PubMed  CAS  Google Scholar 

  88. Cooper JM, Hayes DJ, Challiss RA, et al. Treatment of experimental NADH ubiquinone reductase deficiency with menadione. Brain 1992; 115 (Pt 4): 991–1000

    PubMed  Google Scholar 

  89. Shoffner JM. Oxidative phosphorylation disease. In: Scriver CR, Beaudet AL, Sly WS, et al., editors. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2001: 2367–2534

    Google Scholar 

  90. Hagen TM, Ingersoll RT, Lykkesfeldt J, et al. (R)-alpha-lipoic acid-supplemented old rats have improved mitochondrial function, decreased oxidative damage, and increased metabolic rate. FASEB J 1999; 13(2): 411–8

    PubMed  CAS  Google Scholar 

  91. Jacob S, Henriksen EJ, Tritschler HJ, et al. Improvement of insulin-stimulated glucose-disposal in type 2 diabetes after repeated parenteral administration of thioctic acid. Exp Clin Endocrinol Diabetes 1996; 104(3): 284–8

    Article  PubMed  CAS  Google Scholar 

  92. Tarnopolsky MA, Beal MF. Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Ann Neurol 2001; 49(5): 561–74

    Article  PubMed  CAS  Google Scholar 

  93. Barbiroli B, Medori R, Tritschler HJ, et al. Lipoic (thioctic) acid increases brain energy availability and skeletal muscle performance as shown by in vivo 31P-MRS in a patient with mitochondrial cytopathy. J Neurol 1995; 242(7): 472–7

    Article  PubMed  CAS  Google Scholar 

  94. De Vivo DC, Tein I. Primary and secondary disorders of carnitine metabolism. Int Pediatr 1990; 5: 134–41

    Google Scholar 

  95. Enns GM, Bennett MJ, Hoppel CL, et al. Mitochondrial respiratory chain complex I deficiency with clinical and biochemical features of long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency. J Pediatr 2000; 136(2): 147–8

    Article  Google Scholar 

  96. Campos Y, Garcia-Silva T, Barrionuevo CR, et al. Mitochondrial DNA deletion in a patient with mitochondrial myopathy, lactic acidosis, and stroke-like episodes (MELAS) and Fanconi’s syndrome. Pediatr Neurol 1995; 13(1): 69–72

    Article  PubMed  CAS  Google Scholar 

  97. Hsu CC, Chuang YH, Tsai JL, et al. CPEO and carnitine deficiency overlapping in MELAS syndrome. Acta Neurol Scand 1995; 92(3): 252–5

    Article  PubMed  CAS  Google Scholar 

  98. Marriage B, Clandinin MT, Glerum DM. Nutritional cofactor treatment in mitochondrial disorders. J Am Diet Assoc 2003; 103: 1029–38

    Article  PubMed  Google Scholar 

  99. Shapira Y, Cederbaum SD, Cancilla PA, et al. Familial poliodystrophy, mitochondrial myopathy, and lactate acidemia. Neurology 1975; 25(7): 614–21

    Article  PubMed  CAS  Google Scholar 

  100. Skoglund RR. Reversible alexia, mitochondrial myopathy, and lactic acidemia. Neurology 1979; 29(5): 717–20

    Article  PubMed  CAS  Google Scholar 

  101. Heiman-Patterson TD, Argov Z, Chavin JM, et al. Biochemical and genetic studies in a family with mitochondrial myopathy. Muscle Nerve 1997; 20(10): 1219–24

    Article  PubMed  CAS  Google Scholar 

  102. Mastaglia FL, Thompson PL, Papadimitriou JM. Mitochondrial myopathy with cardiomyopathy, lactic acidosis and response to prednisone and thiamine. Aust N Z J Med 1980; 10(6): 660–4

    Article  PubMed  CAS  Google Scholar 

  103. Gubbay SS, Hankey GJ, Tan NT, et al. Mitochondrial encephalomyopathy with corticosteroid dependence. Med J Aust 1989; 151(2): 100–3, 106, 108

    PubMed  CAS  Google Scholar 

  104. Montagna P, Gallassi R, Medori R, et al. MELAS syndrome: characteristic migrainous and epileptic features and maternal transmission. Neurology 1988; 38(5): 751–4

    Article  PubMed  CAS  Google Scholar 

  105. Rossi FH, Okun M, Yachnis A, et al. Corticosteroid treatment of mitochondrial encephalomyopathies. Neurologist 2002; 8(5): 313–5

    Article  PubMed  Google Scholar 

  106. Willmore LJ, Triggs WJ. Effect of phenytoin and corticosteroids on seizures and lipid peroxidation in experimental posttraumatic epilepsy. J Neurosurg 1984; 60(3): 467–72

    Article  PubMed  CAS  Google Scholar 

  107. Saunders RD, Dugan LL, Demediuk P, et al. Effects of methylprednisolone and the combination of alpha-tocopherol and selenium on arachidonic acid metabolism and lipid peroxidation in traumatized spinal cord tissue. J Neurochem 1987; 49(1): 24–31

    Article  PubMed  CAS  Google Scholar 

  108. Harris RC, Soderlund K, Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond) 1992; 83(3): 367–74

    CAS  Google Scholar 

  109. Tarnopolsky MA, Parise G. Direct measurement of high-energy phosphate compounds in patients with neuromuscular disease. Muscle Nerve 1999; 22(9): 1228–33

    Article  PubMed  CAS  Google Scholar 

  110. Tarnopolsky MA, Roy BD, MacDonald JR. A randomized, controlled trial of creatine monohydrate in patients with mitochondrial cytopathies. Muscle Nerve 1997; 20(12): 1502–9

    Article  PubMed  CAS  Google Scholar 

  111. Hagenfeldt L, von Dobeln U, Solders G, et al. Creatine treatment in MELAS. Muscle Nerve 1994; 17(10): 1236–7

    PubMed  CAS  Google Scholar 

  112. Barisic N, Bernert G, Ipsiroglu O, et al. Effects of oral creatine supplementation in a patient with MELAS phenotype and associated nephropathy. Neuropediatrics 2002; 33(3): 157–61

    Article  PubMed  CAS  Google Scholar 

  113. Wallimann T, Dolder M, Schlattner U, et al. Some new aspects of creatine kinase (CK): compartmentation, structure, function and regulation for cellular and mitochondrial bioenergetics and physiology. Biofactors 1998; 8(3–4): 229–34

    Article  PubMed  CAS  Google Scholar 

  114. Radda GK, Odoom J, Kemp G, et al. Assessment of mitochondrial function and control in normal and diseased states. Biochim Biophys Acta 1995; 1271(1): 15–9

    Article  PubMed  Google Scholar 

  115. Kurogouchi F, Oguchi T, Mawatari E, et al. A case of mitochondrial cytopathy with a typical point mutation for MELAS, presenting with severe focal-segmental glomerulosclerosis as main clinical manifestation. Am J Nephrol 1998; 18(6): 551–6

    Article  PubMed  CAS  Google Scholar 

  116. Koga Y, Ishibashi M, Ueki I, et al. Effects of L-arginine on the acute phase of strokes in three patients with MELAS. Neurology 2002; 58(5): 827–8

    Article  PubMed  CAS  Google Scholar 

  117. Kubota M, Sakakihara Y, Mori M, et al. Beneficial effect of Larginine for stroke-like episode in MELAS. Brain Dev 2004; 26(7): 481–3

    Article  PubMed  Google Scholar 

  118. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993; 329(27): 2002–12

    Article  PubMed  CAS  Google Scholar 

  119. Nakaki T, Hishikawa K, Suzuki H, et al. L-arginine-induced hypotension [letter]. Lancet 1990; 336(8716): 696

    Article  PubMed  CAS  Google Scholar 

  120. Stansbie D. Regulation of the human pyruvate dehydrogenase complex. Clin Sci Mol Med 1976; 51(5): 445–52

    PubMed  CAS  Google Scholar 

  121. Clark AS, Mitch WE, Goodman MN, et al. Dichloroacetate inhibits glycolysis and augments insulin-stimulated glycogen synthesis in rat muscle. J Clin Invest 1987; 79(2): 588–94

    Article  PubMed  CAS  Google Scholar 

  122. Stacpoole PW, Henderson GN, Yan Z, et al. Clinical pharmacology and toxicology of dichloroacetate. Environ Health Perspect 1998; 106Suppl. 4: 989–94

    PubMed  CAS  Google Scholar 

  123. Craigen WJ. Leigh disease with deficiency of lipoamide dehydrogenase: treatment failure with dichloroacetate. Pediatr Neurol 1996; 14(1): 69–71

    Article  PubMed  CAS  Google Scholar 

  124. Takanashi J, Sugita K, Tanabe Y, et al. Dichloroacetate treatment in Leigh syndrome caused by mitochondrial DNA mutation. J Neurol Sci 1997; 145(1): 83–6

    Article  PubMed  CAS  Google Scholar 

  125. Pavlakis SG, Kingsley PB, Kaplan GP, et al. Magnetic resonance spectroscopy: use in monitoring MELAS treatment. Arch Neurol 1998; 55(6): 849–52

    Article  PubMed  CAS  Google Scholar 

  126. Mori M, Yamagata T, Goto T, et al. Dichloroacetate treatment for mitochondrial cytopathy: long-term effects in MELAS. Brain Dev 2004; 26(7): 453–8

    Article  PubMed  Google Scholar 

  127. Spruijt L, Naviaux RK, McGowan KA, et al. Nerve conduction changes in patients with mitochondrial diseases treated with dichloroacetate. Muscle Nerve 2001; 24(7): 916–24

    Article  PubMed  CAS  Google Scholar 

  128. Stacpoole PW, Harwood Jr HJ, Cameron DF, et al. Chronic toxicity of dichloroacetate: possible relation to thiamine deficiency in rats. Fundam Appl Toxicol 1990; 14(2): 327–37

    Article  PubMed  CAS  Google Scholar 

  129. Kaufmann P, Engelstad K, Wei Y, et al. Dichloroacetate causes toxic neuropathy in MELAS: a randomised, controlled clinical trial. Neurology 2006; 66(3): 329–30

    Article  CAS  Google Scholar 

  130. Hashimoto Y, Niikura T, Tajima H, et al. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Abeta. Proc Natl Acad Sci U S A 2001; 98(11): 6336–41

    Article  PubMed  CAS  Google Scholar 

  131. Kariya S, Takahashi N, Hirano M, et al. Humanin improves impaired metabolic activity and prolongs survival of serumdeprived human lymphocytes. Mol Cell Biochem 2003; 254(1–2): 83–9

    Article  PubMed  CAS  Google Scholar 

  132. Kariya S, Hirano M, Furiya Y, et al. Effect of humanin on decreased ATP levels of human lymphocytes harboring A3243G mutant mitochondrial DNA. Neuropeptides 2005; 39(2): 97–101

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Drs Lee-Jun C. Wong and William J. Craigen for critically reviewing the manuscript.

No sources of funding were used to assist in the preparation of this review. The authors have no potential conflicts of interest to disclose that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Scaglia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scaglia, F., Northrop, J.L. The Mitochondrial Myopathy Encephalopathy, Lactic Acidosis with Stroke-Like Episodes (MELAS) Syndrome. CNS Drugs 20, 443–464 (2006). https://doi.org/10.2165/00023210-200620060-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-200620060-00002

Keywords

Navigation