Flutter in flow-limited collapsible tubes: a mechanism for generation of wheezes

J Appl Physiol (1985). 1989 May;66(5):2251-61. doi: 10.1152/jappl.1989.66.5.2251.

Abstract

We studied flutter in collapsible tubes as a possible mechanism for the generation of respiratory wheezes. The pressure-flow relationships and the wall oscillations of thick-walled [wall thickness (h)-to-lumen radius (r) ratio 1:1.7 to 1.3] self-supporting latex and Silastic tubes mounted between rigid pipes were measured. A high-impedance vacuum pump was connected to the downstream end. Upstream and downstream valves were used to control corresponding resistances. We found loud honking sounds and tube wall oscillations that occurred only when the tubes were buckled and flow limiting, i.e., when the flow became constant and independent of downstream driving pressure. The overall range of oscillatory frequencies was 260-750 Hz for airflow, presenting as sharp peaks of power on the frequency spectrum. The oscillatory frequencies (f) were higher at higher fluid velocities (u) and with narrower distance between opposing flattened walls (2b), resulting from increasing downstream suction pressure and the transmural pressure becoming more negative. The effect of u and b on f for a latex tube (h-to-r ratio 1:1.7) were found to be f = 228 + 0.021 (u/b). These relationships were valid throughout the range of oscillations in this tube (283-720 Hz) and with flow rates of 12-64 l/min. The experimental data were compared with predictions of the fluid dynamic flutter theory and the vortex-induced wall vibrations mechanism. We conclude that viscid flutter in soft tubes is the more probable mechanism for the generation of oscillations in the soft tube model and is a possible mechanism for the generation of respiratory wheezes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Humans
  • Latex
  • Models, Biological*
  • Oscillometry
  • Pressure
  • Respiratory Sounds / physiopathology*
  • Silicone Elastomers

Substances

  • Latex
  • Silicone Elastomers