Article Text

Frailty in COPD: an analysis of prevalence and clinical impact using UK Biobank
  1. Peter Hanlon1,
  2. James Lewsey1,
  3. Jennifer K Quint2,
  4. Bhautesh D Jani1,
  5. Barbara I Nicholl1,
  6. David A McAllister1 and
  7. Frances S Mair1
  1. 1Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
  2. 2National Heart and Lung Institute, Imperial College London, London, UK
  1. Correspondence to Dr Peter Hanlon; Peter.Hanlon{at}glasgow.ac.uk

Abstract

Background Frailty, a state of reduced physiological reserve, is common in people with chronic obstructive pulmonary disease (COPD). Frailty can occur at any age; however, the implications in younger people (eg, aged <65 years) with COPD are unclear. We assessed the prevalence of frailty in UK Biobank participants with COPD; explored relationships between frailty and forced expiratory volume in 1 second (FEV1) and quantified the association between frailty and adverse outcomes.

Methods UK Biobank participants (n=3132, recruited 2006–2010) with COPD aged 40–70 years were analysed comparing two frailty measures (frailty phenotype and frailty index) at baseline. Relationship with FEV1 was assessed for each measure. Outcomes were mortality, major adverse cardiovascular event (MACE), all-cause hospitalisation, hospitalisation with COPD exacerbation and community COPD exacerbation over 8 years of follow-up.

Results Frailty was common by both definitions (17% frail using frailty phenotype, 28% moderate and 4% severely frail using frailty index). The frailty phenotype, but not the frailty index, was associated with lower FEV1. Frailty phenotype (frail vs robust) was associated with mortality (HR 2.33; 95% CI 1.84 to 2.96), MACE (2.73; 1.66 to 4.49), hospitalisation (incidence rate ratio 3.39; 2.77 to 4.14) hospitalised exacerbation (5.19; 3.80 to 7.09) and community exacerbation (2.15; 1.81 to 2.54), as was frailty index (severe vs robust) (mortality (2.65; 95% CI 1.75 to 4.02), MACE (6.76; 2.68 to 17.04), hospitalisation (3.69; 2.52 to 5.42), hospitalised exacerbation (4.26; 2.37 to 7.68) and community exacerbation (2.39; 1.74 to 3.28)). These relationships were similar before and after adjustment for FEV1.

Conclusion Frailty, regardless of age or measure, identifies people with COPD at risk of adverse clinical outcomes. Frailty assessment may aid risk stratification and guide-targeted intervention in COPD and should not be limited to people aged >65 years.

  • COPD epidemiology
  • COPD Exacerbations
  • Clinical Epidemiology

Data availability statement

Data may be obtained from a third party and are not publicly available. The UK Biobank data that support the findings of this study are available from the UK Biobank (www.ukbiobank.ac.uk), subject to approval by UK Biobank.

https://creativecommons.org/licenses/by/4.0/

This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Data availability statement

Data may be obtained from a third party and are not publicly available. The UK Biobank data that support the findings of this study are available from the UK Biobank (www.ukbiobank.ac.uk), subject to approval by UK Biobank.

View Full Text

Supplementary materials

  • Supplementary Data

    This web only file has been produced by the BMJ Publishing Group from an electronic file supplied by the author(s) and has not been edited for content.

Footnotes

  • Contributors PH, JL, JKQ, DAM and FM designed the study and wrote the analysis plan. BIN is the data holder under UK Biobank project 14151. PH performed the analysis. PH, BDJ, JKQ, JL, DAM and FM interpreted the findings. PH wrote the first draft. PH, BDJ, JKQ, JL, DAM and FM reviewed this and subsequent drafts and approved the final version for submission. PH, BDJ, BIN, DAM and FM had full access to the data. FM is the guarantor.

  • Funding PH is funded by a Medical Research Council Clinical Research Training Fellowship (Grant reference MR/S021949/1).

  • Competing interests FM is the principal supervisor of PH (first author) who is funded by a MRC Clinical Research Training Fellowship (Grant reference: MR/S021949/1) which supported PH to do this work. FM is also a principal investigator or co-investigator on grants funded by the MRC, NIHR, Wellcome, CSO, and EPSRC to undertake multimorbidity research. The funds go to FM’s institution, the University of Glasgow.

  • Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.