Discussion
SPIROMICS AIR will use state-of-the-art exposure assessment methodologies in order to understand the effect of outdoor and indoor air pollution on the long-term progression of COPD, short-term day-to-day variability in symptoms, and evaluate a potential sputum biomarker of exposure and disease. This study is needed due to the large degree of uncertainty regarding the potential relationship between exposure to air pollution and COPD progression, symptoms and quality of life.
Outdoor air pollution has been linked to exacerbations and mortality in people with chronic respiratory disease.21 22 Population-based studies suggest that outdoor PM concentrations are associated with a more rapid decline in lung function,23 greater per cent emphysema24 and an increase in COPD hospitalisations and mortality,20 25 and outdoor NO2 concentrations are linked to increased risk of developing COPD and higher rates of exacerbations.25–28 A study of 399 subjects with COPD due to alpha-1 proteinase inhibitor deficiency suggested that a 10 µg/m3 increase in PM10 was associated with an extra 30 mL/year decline in FEV1.29 Whether these findings extend to patients with COPD without alpha-1 proteinase inhibitor deficiency and whether the association of PM is modified by other clinical or environmental factors are unknown. SPIROMICS AIR allows for the longitudinal assessment of the effect of air pollution on COPD progression on a variety of outcomes, including validated COPD-specific outcomes, while allowing for adjusting and testing of effect modification by a variety of factors.
In addition to studying effects of long-term exposure to outdoor air pollution on progression of COPD, short-term effects are also still uncertain as existing studies investigating short-term variation in pollution and COPD morbidity have been inconsistent and interpretations limited by small sample size. For example, some studies have shown a link between pollutant exposures and decreased FEV1 or peak expiratory flow21 22 30 whereas others have not.26 31 Similarly, the effect of short-term variability in pollutants on exacerbations and respiratory symptoms also remains unclear. In 94 subjects with COPD, higher PM10 concentrations were linked to more dyspnoea and exacerbations, but no consistent association was found for other symptoms and no associations were found for other pollutants, including NO2, O3 or SO2.26 Another panel study including subjects with COPD and asthma showed adverse respiratory health effects that included respiratory symptoms of coarse PM but not PM2.5 or NO2.32
Studies assessing risk of exacerbations have relied on defining exacerbations by healthcare events such as prescription of systemic corticosteroids, antibiotics or unscheduled visits to a healthcare provider. However, using an event-based definition may miss a significant number of COPD exacerbations that are unreported but nonetheless are associated with worsening symptoms and health status.33 In addition, previous published studies suggest that a lag of 1–3 days may exist between increasing pollutant concentrations and risk of an exacerbation34; however, it is known that COPD exacerbations follow distinct, but varying, patterns of onset and recovery.35 We will investigate whether short-term changes in outdoor air pollution (PM2.5, NO2) are associated with day-to-day changes in COPD symptoms among the subset of subjects enrolled in the SPIROMICS exacerbations substudy. Given the extensive clinical characterisation afforded by SPIROMICS, we will be uniquely positioned to examine the time course of pollutant exposure and the initial onset as well as trajectory of symptom development leading to a reported exacerbation. Similarly, we will explore whether pollutant concentrations affect the varying courses of symptom improvement following exacerbations.
In addition to advancing our understanding of outdoor air pollution on variability of COPD symptoms and COPD progression, SPIROMICS AIR will aim to investigate the effects of indoor air pollution on COPD. Americans, particularly older individuals, spend the vast majority of time indoors (87%),36 and individuals with COPD spend more time at home than their age-matched counterparts.37 Even in homes where biomass is not used as a heating or cooking source, indoor PM2.5 concentrations may be associated with worse health status,38 and among former smokers with moderate-severe COPD living in the Baltimore–Washington area, indoor PM2.5 concentrations were shown to be associated with increases in COPD morbidity.39 Importantly, indoor air pollution is due to both indoor pollutant sources and to infiltration of outdoor air pollutants. Using the individual residential characteristics collected from the home information questionnaire completed by the majority of SPIROMICS participants in combination with meteorological data, we will be able to predict home infiltration efficiency, and predict indoor concentrations regardless of the region of residence. Understanding the potential role of indoor air pollution on COPD outcomes at the individual level is particularly important for indoor air since, unlike outdoor air, it can be modified. This would allow disease management strategies to emphasise reduction of pollutant exposure in the patient’s home.
As we characterise the role of outdoor and indoor air pollution in contributing to COPD outcomes and progression, it becomes increasingly important to identify potential biomarkers of pollutant exposure. Black-pigmented material in airway macrophages (AM) is carbonaceous in nature, and recent literature suggests that a dose–response relationship may exist between this biomarker and PM exposure in healthy controls.11 40 In addition, recent work by Belli et al suggests that BC in AM found in induced sputum may be highly correlated with indoor, but not outdoor, PM in subjects with COPD.12 It remains to be shown whether the carbon content of AMs reflects long-term or short-term exposure to PM and what is the relative contribution of different exposures to AM BC content. The accumulation of BC may lead to inflammation, double-stranded DNA breaks and emphysema in mice,41 and may at least partly explain adverse health outcomes of pollution seen in smokers and non-smokers. Access to banked sputum samples as part of SPIROMICS permits an unprecedented evaluation of this novel measure as a biomarker of pollution exposure.
In summary, the NHLBI-funded SPIROMICS observational study, combined with state-of-the-art air pollution exposure assessment methods, provides an extraordinary opportunity for groundbreaking advances in understanding the contribution of environmental factors to COPD progression and disability.
SPIROMICS AIR will have the benefit of being able to link modelled pollutant concentrations to the extensive participant data collected as part of the SPIROMICS study, enabling the exploration of underlying mechanistic underpinnings to the adverse outcomes resulting from pollution exposure in individuals with COPD.