Discussion
Key findings
The overall mortality rate in our population was 11.4 deaths/PY, with 22.9% of admissions requiring a higher level of support than that which could be provided on a general medical ward. Increasing age, male sex and Asian ethnicity identified individuals with higher inpatient mortality rate in adjusted analyses. This is broadly consistent with inpatient cohorts in central London teaching hospitals, national and international data.15–17 Increasing CXR severity also trends with mortality.
Our RU nested cohort was, on average, younger than the overall study population, reflecting a selection bias towards patients clinically identified as likely to benefit from more intensive therapy. Men and people of Asian ethnicity are also over-represented, which likely reflects more severe disease among these individuals, necessitating additional support.
In the RU cohort, 11 patients (4.6%) had positive studies for thrombosis. The proportion escalated from CPAP/NIV to invasive mechanical ventilation, as well as the mortality thereafter, are comparable to data elsewhere.18 Few published data exist to describe individual centres’ experience of ward based NIV for COVID-19, particularly its use in District General Hospitals with high patient flow.
We report some of the first early follow-up data for patients with severe COVID-19 in the UK. A high proportion of patients remain symptomatic at 6–12 weeks after discharge, particularly with fatigue and breathlessness. These findings are similar to a recently reported central London cohort,9 and to a Belgian study,19 where a restrictive pattern of lung function was common (38%, N=84/101). This finding was associated with longer, or critical care admission. It remains unclear to what extent these features reflect COVID-19 specific complications, rather than deconditioning. Our study additionally found that features of mood disorders were common, with elevated anxiety and depression screening scores. Over half of those previously working had not yet returned to work and did not feel ready to do so, concordant with the increasing care needs seen in a significant amount of patients after discharge in other reports.20 These findings highlight the importance of holistic assessment and ongoing support following COVID-19 and have led to the inclusion of a clinical psychologist, physiotherapist and occupational therapist within our post-COVID clinic.
Limitations
The data presented for the whole hospital cohort used electronic databases and record linkage. While coded diagnoses of ‘confirmed COVID-19’ were checked against laboratory results, there is potential for incorrect coding of ‘suspected’ cases, resulting in both missed cases, and inclusion of individuals who did not in fact have COVID-19. The local process by which these codes were generated (ie, with the clinical team for each individual patient) and use of the last status coded during the admission (when the decision takes into account all available data and the patient’s clinical course during the admission) is likely to increase the accuracy of these codes. Additional reassurance may be provided by our sensitivity analysis, which suggests the findings are similar when restricted to PCR-confirmed cases, and the consistency of our results with other cohorts, which used only PCR-confirmed COVID-19. Coded diagnoses are usually based on initial diagnosis, and rarely with input from the attending physician, thus the method applied locally provides a rare opportunity to understand the mortality experience of people who were clinically felt to have COVID-19 but who did not have a positive laboratory test.
These analyses were developed as an approach to understand our local experience in the first wave of COVID-19 and inform service requirements for future. The RU cohort represents most unwell COVID-19 patients in our hospitals, outside of critical care and therefore can inform the necessary decisions about optimal resource utilisation during surges of SARS-CoV-2 infection, or other future epidemics. This cohort in fact includes the vast majority of all patients admitted to critical care during the period of the study, however, 8.5% patients were admitted to critical care but not the RU and are not included. This cohort may not, therefore, be fully representative of all patients needing higher level of care.
For our adjusted estimates of risk factors for mortality, there is potential for unmeasured confounding, given the limited number of variables available from routine data. For example, pre-existing comorbidities are well recognised as risk factors for poorer outcomes from COVID-19, however, these data were not available.
Despite an approach which includes several attempts to contact individuals after discharge, 16 (12%) patients did not attend and had not been readmitted to hospital; their status at 6–12 weeks is unknown. This is similar to the proportion who did not attend face-to-face follow-up in a clinical trial cohort from Bristol. However, in that study, 48% of those not attending did so due to ongoing shielding. Given the use of telephone appointments, this may be a less common reason in our study; we might suggest therefore that these individuals had fully recovered and felt an appointment was unnecessary or were unable to attend as they had returned to work or care provision.21 If so, the missing data for these individuals may, in a complete case records approach, may have led to overestimation of the prevalence of ongoing symptoms and functional impairment. However, we cannot exclude the converse, that patients who did not attend were unable to do so because of breathlessness or other symptoms impacting mobility. As a result, we did not consider it appropriate to assume that non-attenders were asymptomatic.
Finally, COVID-19 is a rapidly evolving situation, both from a public health and clinical perspective with regular new insights into pathogenesis and treatments. In addition, the development of effective vaccines is of great promise. These data, from the first wave of the UK pandemic may therefore not be generalisable to the current situation, or that in future.
Interpretation
These analyses complement the existing literature describing the clinical course and outcomes of hospitalised individuals with COVID-19 in the UK. These data draw from two district general hospitals in a deprived urban location with a large catchment area, very high emergency department demand, and without specialist clinical infectious diseases units.22 As a result our study population is larger than previously published individual cohorts23 and may be considered more representative of other district general hospitals compared with cohorts from central London. The high deprivation scores among our population should be considered: Barking and Dagenham has the highest index of multiple deprivation (IMD) in London. Other analyses have identified the impact of deprivation on age-standardised mortality rates from COVID-19 in the UK, with a 118% increase in death rate comparing the least deprived to the most deprived areas, a larger effect than deprivation has on all-cause mortality.3 In this context, similar risk factors for mortality were observed.
Increased mortality in individuals of Asian ethnicity has been reported in multiple settings.24 We do not find an association between black ethnicity and survival in our cohort, as is reported elsewhere. This difference may reflect low power to detect a difference, given relatively fewer individuals of Black ethnicity compared with white or Asian in our population, or the effect of unmeasured and unadjusted confounding, for example by deprivation indices.
During the COVID-19 pandemic response hospitals have had to undergo rapid review and service redesign in order to manage healthcare demand, particularly ITU capacity. Locally these factors led to an early decision being taken to adapt two existing general medical/respiratory wards to offer CPAP with high flow oxygen, increased nursing ratios and 24-hour on-site respiratory cover. These analyses were first developed to understand the impact of this service, and we believe they are highly relevant to other clinicians and service managers facing similar decisions. We found that almost 80% of patients had a documented treatment escalation decision, however there was further improvement possible. NIV/CPAP was only used for 20% of admitted patients, with early evidence during the first wave of the UK pandemic demonstrating its effectiveness in reducing mortality.25 Three-quarters of individuals receiving NIV and for whom IMV was considered potentially beneficially were ultimately admitted to higher-dependency care, however a minority (15%) required intubation. We did not capture the reasons for admission to higher-dependency care, which may include need for renal-replacement therapy and inotropic support as well as deteriorating oxygenation. However, we did also have issues with achieving high-oxygen flow rates through some NIV devices, which anecdotally could also have been a factor. While evaluation of awake prone positioning was not an objective of this study, it was in common use at the time of the study. Given the small numbers and high likelihood of confounding (eg, patients able to tolerate awake prone positioning may be less unwell, be less overweight or have fewer comorbidities than those who are not) it is difficult to draw conclusions from the apparent 50% reduction in mortality observed with this intervention.
Early reports from Italy and China suggested a high rate of venous thromboembolism in patients with severe COVID-19 pneumonias.26 27 Data from intensive care units show higher rates of thrombotic complications compared with our respiratory ward cohort.28 However, without a non-COVID-19 comparator group it is difficult to interpret whether our data represents a higher rate of thrombosis than would be expected in hospitalised individuals with other viral pneumonias.
Our finding that CXR severity according to BSTI criteria trends with mortality agrees with similar data from the UK29 and CXR scoring systems such as the Italian Brixia score.30 Together with studies which correlate semiquantitative CT scores with mortality,31 this adds support to the importance of radiological scores in risk stratifying outcome with COVID-19.
The need for more data on recovery from COVID-19 is well recognised.32 We report some of the first data on early follow-up outcomes, including describing ongoing symptoms and CXR abnormalities in the majority of patients, with fatigue the most common symptom. The considerable proportion of patients who screened positive for mood disorders, is an important reminder of the need for multidisciplinary input in development of services for individuals recovering from COVID-19, which should include mental health and rehabilitation support. So-called ‘long COVID-19’ is increasingly recognised, including in patients with milder disease who would not be included in our data. Our findings provide evidence to support development of guidelines for management of postacute COVID-19.33 That almost half of patients who had been working prior to their illness felt unable to return to work 6 weeks after discharge also highlights the potential economic impact of COVID-19 for individuals, particularly the more severely affected Black and Minority Ethnic (BAME) and and economically deprived populations.